深度学习之神经网络(反向传播算法)(三)

神经网络

神经网络最开始是受生物神经系统的启发,为了模拟生物神经系统而出现的。大脑最基本的计算单元是神经元,人类的神经系统中大概有86亿的神经元,它们之间通过1014-1015的突触相连接。每个神经元从它的树突(dendrites)接受输入信号,沿着唯一的轴突(axon)产生输出信号,而轴突通过分支(branches of axon),通过突触(synapses)连接到其他神经元的树突,神经元之间就这通过这样的连接,进行传递。如下图。

image.png

链式法则

先来回顾一下链式法则,这是反向传播算法的推导基础。


image.png

人工神经网络

image.png

人工神经网络其实就是按照一定规则模拟生物神经网络连接起来的多个神经元,也就是感知机。
上图展示了一个全连接(full connected, FC)神经网络,一个全连接的网络要按照层来进行布局。

1.最左边的层叫做输入层,负责接收输入数据。
2.最右边的层叫输出层,我们可以从这层获取神经网络输出数据。
3.输入层和输出层之间的层叫做隐藏层,因为它们对于外部来说是不可见的。
4.同一层的神经元之间没有连接。

上图中,第N层的每个神经元和第N-1层的所有神经元相连(这就是full connected的含义),第N-1层神经元的输出就是第N层神经元的输入。并且每个连接都有一个权值。

这也就是全连接神经网络的结构。

事实上还存在很多其它结构的神经网络,比如卷积神经网络(CNN)、循环神经网络(RNN),他们都具有不同的连接规则。

神经元

神经网络上的激活函数为(并不是全部,还有其他的激活函数):


image.png

sigmoid函数的定义如下:


image.png

即:
image.png

图像表达为:


image.png

可以看出函数的取值范围为(0,1)。
当然为了计算方便,我们还要关注一下它的导数:



可以看出它的导数和它本身的数值相关。

工作原理

image.png

神经网络的作用就是简单的说,就是将输入的x,转化成输出的y。当然其中还要包括许多的处理。包括先从前往后,求取值,再从后往前更新权值。
下面以监督学习为例:


image.png

已知输入向量X,获取输 出向量Y。当然对于监督学习来说,我们会有许多的样本(X,Y),这里面的Y值是已知的,但是我们还要求得实际的Y值,来算取得本次样本数据的误差。
这就需要向前传播。

向前传播

从输入层到隐藏层:
对隐藏层的节点4来说,它的输出值a4为:


image.png

同理求得节点5,6,7的输出值a5,a6,a7。


image.png

从隐藏层到输出层:
对于节点8来说,其输出值y1为:
image.png

同理y2:

image.png

所以对于实际输出向量Y来说,它和输入向量X的关系就是:


image.png
image.png

向后传播

获得实际的输出值后,我们就要来计算误差。
误差的计算方式:


image.png

将一次样本期望输出的向量值T(因为是神经网络,所以输出值为向量),减去实际输出的向量Y。其中d代表样本编号。

当然此时涉及到两层的权值向量的更改,就不能仅仅是向线性单元那样计算了,不过大致的思想是一直的,都是采用梯度下降的思想,不过这时候还要使用链式法则。


image.png

其中的i和j表示,从i节点指向j节点。
根据这种方式来求取对每个节点的权值的更新,当然这也有个问题,就是因为网络是多层的,无法直接的求得每一层的对权重的改变。


image.png

这就需要使用链式法则:


image.png

(来自零基础入门深度学习(3) - 神经网络和反向传播算法)
对输出层来说:


image.png

其中j代表第j个节点。
所以根据链式法则:


image.png

只考虑第一项:


image.png

只考虑第二项:
image.png

这里设定一个betal值:

及:


image.png

所以最后得到输出层的权重改变公式:


image.png

再考虑隐藏层:
对隐藏层来说,它对结果的改变主要是通过影响输出层的输入值来响应最后的输出结果。
这个就需要分开来考虑。
比如节点4,它的输出值可以分别影响到y1和y2.
所以对误差E来说,节点4的输出值a4对其的影响,可以写成:


image.png

扩展开来,也就是链式法则的全导数:


image.png

其中Downstream(j)代表所有j的下游节点的集合(比如节点4,它的下游节点为8,9),netk就表示下游节点的输入数据。
最后求得:
image.png

大功告成,根据以上的公式就可以来推断一下权值的更新了,下面举个例子来实践一下。(知行合一才是硬道理O(∩_∩)O哈哈~)

同时也感谢大神@hanbingtao的文章,让我这个小白理解了神经网络。感谢。

神经网络解决异或

异或问题在感知器的时候已经知道,因为它是非线性的所以无法用感知器来解决。不过可以使用神经网络尝试一下。


image.png

首先先构建神经网络,本次的网络构建如图所示。

代码

# coding=utf-8
# numpy 支持高级大量的维度数组与矩阵运算
import numpy  as np


#定义坐标,设定5组输入数据,每组为(x0,x1,x2)
X=np.array([[1,0,0],
            [1,0,1],
            [1,1,0],
            [1,1,1]]);

#设定输入向量的期待输出值
Y=np.array([0,1,1,0]);

#设定权值向量(V,W)
#输入层和隐藏层之间的权值
V = np.array([[0,0.1,0.7],
             [0.5,0.2,0.1],
             [0.1,0.1,0.3]]);
#隐藏层和输出层之间的权值
W = np.array([[0.2,0.1,0.3]]);

#设定学习率
lr = 0.5;

#sigmoid函数
def sigmoid(x):
    return 1/(1+np.exp(-x));
#对sigmoid函数求导
def sigmoid_daoshu(x):
    return x*(1-x);

def  updateW():
    global  X,Y,V,W,lr,n;
    #权值向量修正记录
    W_C = np.array([[0,0,0]]);
    V_C = np.array([[0,0,0],
                    [0,0,0],
                    [0,0,0]]);

    #4个样本分别计算
    for i in range(0,4):
        ##第一层(矩阵3*1)
        layer_1_input = np.dot(V,np.array([X[i]]).T);  ## V*X
        layer_1_output = sigmoid(layer_1_input);  ## a=f(V*X)

        ##第二层(矩阵1*1)
        layer_2_input = np.dot(W,layer_1_output);  
        layer_2_output = sigmoid(layer_2_input);

        #第二层的误差(矩阵1*1)
        E_2 = Y[i] - layer_2_output.T;
        ## 输出层的detal(矩阵1*1)
        layer_2_detal = E_2*sigmoid_daoshu(layer_2_output);

        ##隐藏层的误差(矩阵3*1)
        E_1 = np.dot(W.T,layer_2_detal);
        
        ## 隐藏层的detal(矩阵3*1)
        layer_1_detal = E_1*sigmoid_daoshu(layer_1_output);

        ##所有的W向量增加数值
        W_C = W_C + np.dot(layer_2_detal, layer_1_output.T);
        ##所有的V向量增加数值
        V_C = V_C + np.dot(layer_1_detal, np.array([X[i]]));

    #求出平均数
    W_d = W_C/4.0;
    V_d = V_C/4.0;
    #修改权值
    W = W + lr*W_d;
    V = V + lr*V_d;


if __name__ == '__main__':
    output = [0,0,0,0];
    #设置迭代次数
    for index in range (10000):
        updateW();
        if index==0 or index==(10000-1):
            #计算出结果
            for i in range(0,4):
                layer_1_input = np.dot(V,np.array([X[i]]).T); 
                layer_1_output = sigmoid(layer_1_input);  
                
                layer_2_input = np.dot(W,layer_1_output);  
                layer_2_output = sigmoid(layer_2_input);

                output[i] = layer_2_output[0][0];
            print output


运行结果

image.png

可以看出,经过10000次迭代,结果已经很接近了。
大功告成!!
回去吃大餐!

参考

神经网络基础介绍
https://blog.csdn.net/wq2610115/article/details/68928368
一文搞懂反向传播算法
https://www.jianshu.com/p/964345dddb70
零基础入门深度学习(3) - 神经网络和反向传播算法
https://www.zybuluo.com/hanbingtao/note/476663

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 212,332评论 6 493
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,508评论 3 385
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 157,812评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,607评论 1 284
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,728评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,919评论 1 290
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,071评论 3 410
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,802评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,256评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,576评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,712评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,389评论 4 332
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,032评论 3 316
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,798评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,026评论 1 266
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,473评论 2 360
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,606评论 2 350

推荐阅读更多精彩内容