使用 opencv 识别图片色彩区域并进行截剪保存

import cv2
import  numpy as np

导入图片

image = cv2.imread("a.jpg")

转换为灰度图

gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)

用Sobel算子计算xy方向上的梯度,之后在x方向上减去y方向上的梯度,通过这个减法,我们留下具有高水平梯度和低垂直梯度的图像区域。

gradX = cv2.Sobel(gray, cv2.CV_32F, dx=1, dy=0, ksize=-1)
gradY = cv2.Sobel(gray, cv2.CV_32F, dx=0, dy=1, ksize=-1)

梯度减法

gradient = cv2.subtract(gradX, gradY)
gradient = cv2.convertScaleAbs(gradient)

去除图像上的噪声。

使用低通滤泼器平滑图像(9 x 9内核),这将有助于平滑图像中的高频噪声。
低通滤波器的目标是降低图像的变化率。如将每个像素替换为该像素周围像素的均值。
这样就可以平滑并替代那些强度变化明显的区域。

blurred = cv2.blur(gradient, (9, 9))

对模糊图像二值化,梯度图像中不大于90的任何像素都设置为0(黑色),否则,像素设置为255(白色)。

_, thresh = cv2.threshold(blurred, 90, 255, cv2.THRESH_BINARY)

用白色填充这些空余,使得后面的程序更容易识别,减少误差

kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (25, 25))
closed = cv2.morphologyEx(thresh, cv2.MORPH_CLOSE, kernel)

分别执行4次形态学腐蚀与膨胀

closed = cv2.erode(closed, None, iterations=4)
closed = cv2.dilate(closed, None, iterations=4)

找出域轮廓

cv2.findContours()函数
第一个参数是要检索的图片,必须是为二值图,即黑白的(不是灰度图),
所以读取的图像要先转成灰度的,再转成二值图,我们在第三步用cv2.threshold()函数已经得到了二值图。
第二个参数表示轮廓的检索模式,有四种:
cv2.RETR_EXTERNAL表示只检测外轮廓
cv2.RETR_LIST检测的轮廓不建立等级关系
cv2.RETR_CCOMP建立两个等级的轮廓,上面的一层为外边界,里面的一层为内孔的边界信息。如果内孔内还有一个连通物体,这个物体的边界也在顶层。
cv2.RETR_TREE建立一个等级树结构的轮廓。
第三个参数为轮廓的近似方法
cv2.CHAIN_APPROX_NONE存储所有的轮廓点,相邻的两个点的像素位置差不超过1,即max(abs(x1-x2),abs(y2-y1))==1
cv2.CHAIN_APPROX_SIMPLE压缩水平方向,垂直方向,对角线方向的元素,只保留该方向的终点坐标,例如一个矩形轮廓只需4个点来保存轮廓信息
cv2.findContours()函数返回两个值,一个是轮廓本身,还有一个是每条轮廓对应的属性。
cv2.findContours()函数返回第一个值是list,list中每个元素都是图像中的一个轮廓,用numpy中的ndarray表示。
每一个ndarray里保存的是轮廓上的各个点的坐标。我们把list排序,点最多的那个轮廓就是我们要找的轮廓。

x = cv2.findContours(closed.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE)
_a, cnts, _b = x
c = sorted(cnts, key=cv2.contourArea, reverse=True)
# c 储存了所有的轮廓

cv2.minAreaRect() 函数:
主要求得包含点集最小面积的矩形,这个矩形是可以有偏转角度的,可以与图像的边界不平行。

rect = cv2.minAreaRect(c[0])
box = np.int0(cv2.boxPoints(rect))

OpenCV中通过cv2.drawContours在图像上绘制轮廓。
第一个参数是指明在哪幅图像上绘制轮廓
第二个参数是轮廓本身,在Python中是一个list
第三个参数指定绘制轮廓list中的哪条轮廓,如果是-1,则绘制其中的所有轮廓
第四个参数是轮廓线条的颜色
第五个参数是轮廓线条的粗细

cv2.drawContours(image, [box], -1, (0, 255, 0), 3)
裁剪保存图片。

box里保存的是绿色矩形区域四个顶点的坐标。
找出四个顶点的xy坐标的最大最小值。新图像的高=maxY-minY宽=maxX-minX

Xs = [i[0] for i in box]
Ys = [i[1] for i in box]
x1 = min(Xs)
x2 = max(Xs)
y1 = min(Ys)
y2 = max(Ys)
hight = y2 - y1
width = x2 - x1
cropImg = image[y1:y1+hight, x1:x1+width]
cv2.imwrite("b.jpg")

过程中,也可以通过来查看图片

cv2.namedWindow("img", 0)
cv2.imshow("img", image)
cv2.waitKey(0)
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 217,509评论 6 504
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,806评论 3 394
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 163,875评论 0 354
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,441评论 1 293
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,488评论 6 392
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,365评论 1 302
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,190评论 3 418
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 39,062评论 0 276
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,500评论 1 314
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,706评论 3 335
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,834评论 1 347
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,559评论 5 345
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,167评论 3 328
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,779评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,912评论 1 269
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,958评论 2 370
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,779评论 2 354

推荐阅读更多精彩内容