Given a m x n grid filled with non-negative numbers, find a path from top left to bottom right which minimizes the sum of all numbers along its path.
Example:
Input:
[
[1,3,1],
[1,5,1],
[4,2,1]
]
Output: 7
Explanation: Because the path 1→3→1→1→1 minimizes the sum.
Note:
You can only move either down or right at any point in time.
解释下题目:
从左上角走到右下角,找到数值最小的那一条路,你只能往下走或者往右走。
1. 动态规划法
实际耗时:6ms
public int minPathSum(int[][] grid) {
if (grid.length <= 0) {
return 0;
}
int[][] result = new int[grid.length][grid[0].length];
result[0][0] = grid[0][0];
//最左边的一列
for (int i = 1; i < grid.length; i++) {
result[i][0] = grid[i][0] + result[i - 1][0];
}
//最上面的一行
for (int j = 1; j < grid[0].length; j++) {
result[0][j] = grid[0][j] + result[0][j - 1];
}
for (int i = 1; i < grid.length; i++) {
for (int j = 1; j < grid[0].length; j++) {
result[i][j] = grid[i][j] + Math.min(result[i - 1][j], result[i][j - 1]);
}
}
return result[grid.length - 1][grid[0].length - 1];
}
思路:就是在之前的基础上加一个判断,到底是从上面走过来开销小呢,还是从左边走过来开销小呢。