核心源码分析
2.1 类声明
先来看一下类的声明,有一个继承(抽象类)和四个接口关系
public class ArrayList<E> extends AbstractList<E>
implements List<E>, RandomAccess, Cloneable, java.io.Serializable
{
// 源码具体内容...
}
RandomAccess 是一个标志接口(Marker)只要 List 集合实现这个接口,就能支持快速随机访问(通过元素序号快速获取元素对象 —— get(int index))
Cloneable :实现它就可以进行克隆(clone())
java.io.Serializable :实现它意味着支持序列化,满足了序列化传输的条件
2.2 类成员
下面接着看一些成员属性
// 序列化自动生成的一个码,用来在正反序列化中验证版本一致性。
private static final long serialVersionUID = 8683452581122892189L;
/**
* 默认初始容量大小为10
*/
private static final int DEFAULT_CAPACITY = 10;
/**
* 指定 ArrayList 容量为0(空实例)时,返回此空数组
*/
private static final Object[] EMPTY_ELEMENTDATA = {};
/**
* 与 EMPTY_ELEMENTDATA 的区别是,它是默认返回的,而前者是用户指定容量为 0 才返回
*/
private static final Object[] DEFAULTCAPACITY_EMPTY_ELEMENTDATA = {};
/**
* 具体存放元素的数组
* 保存添加到 ArrayList 中的元素数据(第一次添加元素时,会扩容到 DEFAULT_CAPACITY = 10 )
*/
transient Object[] elementData; // non-private to simplify nested class access
/**
* ArrayList 实际所含元素个数(大小)
*/
private int size;
2.4 构造方法
/**
* 带参构造函数,参数为用户指定的初始容量
*/
public ArrayList(int initialCapacity) {
if (initialCapacity > 0) {
// 参数大于0,创建 initialCapacity 大小的数组
this.elementData = new Object[initialCapacity];
} else if (initialCapacity == 0) {
// 参数为0,创建空数组(成员中有定义)
this.elementData = EMPTY_ELEMENTDATA;
} else {
// 其他情况,直接抛异常
throw new IllegalArgumentException("Illegal Capacity: "+
initialCapacity);
}
}
/**
* 默认无参构造函数,初始值为 0
* 也说明 DEFAULT_CAPACITY = 10 这个容量
* 不是在构造函数初始化的时候设定的(而是在添加第一个元素的时候)
*/
public ArrayList() {
this.elementData = DEFAULTCAPACITY_EMPTY_ELEMENTDATA;
}
/**
* 构造一个包含指定 collection 的元素的列表
* 这些元素是按照该 collection 的迭代器返回它们的顺序排列的。
*/
public ArrayList(Collection<? extends E> c) {
// 将给定的集合转成数组
elementData = c.toArray();
// 如果数组长度不为 0
if ((size = elementData.length) != 0) {
// elementData 如果不是 Object 类型的数据,返回的就不是 Object 类型的数组
if (elementData.getClass() != Object[].class)
// 将不是 Object 类型的 elementData 数组,赋值给一个新的 Object 类型的数组
elementData = Arrays.copyOf(elementData, size, Object[].class);
} else {
// 数组长度为 0 ,用空数组代替
this.elementData = EMPTY_ELEMENTDATA;
}
}
2.5 最小化实例容量方法
/**
* 最小化实例容量方法,可以根据实际元素个数,将数组容量优化,防止浪费
*/
public void trimToSize() {
modCount++;
// 数组容量大于实际元素个数(例如10个元素,却有15个容量)
if (size < elementData.length) {
// 根据元素实际个数,重新最小化实例容量
elementData = (size == 0)
? EMPTY_ELEMENTDATA
: Arrays.copyOf(elementData, size);
}
}
2.5 扩容方法
这里只是按照顺序介绍,后面还会专门针对扩容进行一个分析
/**
* 增加ArrayList实例的容量,如果有必要,确保它至少可以保存由最小容量参数指定的元素数量。
*/
public void ensureCapacity(int minCapacity) {
//如果元素数组不为默认的空,则 minExpand 的值为0,反之值为10
int minExpand = (elementData != DEFAULTCAPACITY_EMPTY_ELEMENTDATA)
// any size if not default element table
? 0
// larger than default for default empty table. It's already
// supposed to be at default size.
: DEFAULT_CAPACITY;
// 如果最小容量大于已有的最大容量
if (minCapacity > minExpand) {
ensureExplicitCapacity(minCapacity);
}
}
/**
* 计算最小扩容量(被调用)
*/
private static int calculateCapacity(Object[] elementData, int minCapacity) {
// 如果元素数组为默认的空
if (elementData == DEFAULTCAPACITY_EMPTY_ELEMENTDATA) {
// 获取“默认的容量”和“传入参数 minCapacity ”两者之间的最大值
return Math.max(DEFAULT_CAPACITY, minCapacity);
}
return minCapacity;
}
/**
* 得到最小扩容量
*/
private void ensureCapacityInternal(int minCapacity) {
ensureExplicitCapacity(calculateCapacity(elementData, minCapacity));
}
/**
* 判断是否需要扩容
*/
private void ensureExplicitCapacity(int minCapacity) {
modCount++;
// overflow-conscious code
// 如果最小容量比数组的长度还大
if (minCapacity - elementData.length > 0)
// 就调用grow方法进行扩容
grow(minCapacity);
}
/**
* 要分配的最大数组大小
*/
private static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8;
/**
* ArrayList 扩容的核心方法
*/
private void grow(int minCapacity) {
// 将当前元素数组长度定义为 oldCapacity 旧容量
int oldCapacity = elementData.length;
// 新容量更新为旧容量的1.5倍
// oldCapacity >> 1 为按位右移一位,相当于 oldCapacity 除以2的1次幂
int newCapacity = oldCapacity + (oldCapacity >> 1);
// 然后检查新容量是否大于最小需要容量,若还小,就把最小需要容量当作数组的新容量
if (newCapacity - minCapacity < 0)
newCapacity = minCapacity;
// 再检查新容量是否超出了ArrayList 所定义的最大容量
if (newCapacity - MAX_ARRAY_SIZE > 0)
// 若超出,则调用hugeCapacity()
newCapacity = hugeCapacity(minCapacity);
elementData = Arrays.copyOf(elementData, newCapacity);
}
/**
* 比较minCapacity和 MAX_ARRAY_SIZE
*/
private static int hugeCapacity(int minCapacity) {
if (minCapacity < 0) // overflow
throw new OutOfMemoryError();
return (minCapacity > MAX_ARRAY_SIZE) ?
Integer.MAX_VALUE :
MAX_ARRAY_SIZE;
}
2.6 常规方法
/**
* 返回元素数量
*/
public int size() {
return size;
}
/**
* 此列表元素数量为 0 则返回 true
*/
public boolean isEmpty() {
return size == 0;
}
/**
* 此列表含有指定元素,则返回true
*/
public boolean contains(Object o) {
return indexOf(o) >= 0;
}
/**
* 返回此列表中元素首次出现位置的索引
* 若不包含此元素,则返回 -1
*/
public int indexOf(Object o) {
if (o == null) {
for (int i = 0; i < size; i++)
if (elementData[i]==null)
return i;
} else {
// 本质就是循环 equals 比对
for (int i = 0; i < size; i++)
if (o.equals(elementData[i]))
return i;
}
return -1;
}
/**
* 返回此列表中指定元素的最后一次出现的索引
* 如果此列表不包含元素,则返回 -1
*/
public int lastIndexOf(Object o) {
if (o == null) {
for (int i = size-1; i >= 0; i--)
if (elementData[i]==null)
return i;
} else {
// 逆向循环 equals 比对
for (int i = size-1; i >= 0; i--)
if (o.equals(elementData[i]))
return i;
}
return -1;
}
/**
* 返回 ArrayList 实例的浅拷贝
*/
public Object clone() {
try {
ArrayList<?> v = (ArrayList<?>) super.clone();
// 实现数组的复制,参数为被复制者的参数
v.elementData = Arrays.copyOf(elementData, size);
v.modCount = 0;
return v;
} catch (CloneNotSupportedException e) {
// this shouldn't happen, since we are Cloneable
throw new InternalError(e);
}
}
/**
* 返回一个包含此列表中所有元素的数组(理解为将集合转为数组即可)
*/
public Object[] toArray() {
return Arrays.copyOf(elementData, size);
}
/**
* 将list转化为你所需要类型的数组,然后返回
*/
@SuppressWarnings("unchecked")
public <T> T[] toArray(T[] a) {
if (a.length < size)
// Make a new array of a's runtime type, but my contents:
return (T[]) Arrays.copyOf(elementData, size, a.getClass());
// 复制用法,下面专题会讲解此内容
System.arraycopy(elementData, 0, a, 0, size);
if (a.length > size)
a[size] = null;
return a;
}
// Positional Access Operations
@SuppressWarnings("unchecked")
E elementData(int index) {
return (E) elementData[index];
}
/**
* 返回此列表中指定位置的元素。
*/
public E get(int index) {
// index 范围检查
rangeCheck(index);
return elementData(index);
}
/**
* 用指定的元素替换此列表中指定位置的元素。
*/
public E set(int index, E element) {
// index 范围检查
rangeCheck(index);
// 根据 index 找到想替换的旧元素
E oldValue = elementData(index);
// 替换元素
elementData[index] = element;
return oldValue;
}
/**
* 将指定的元素追加到此列表的末尾。
*/
public boolean add(E e) {
// 确认 list 容量,尝试容量加 1,看看有无必要扩容
ensureCapacityInternal(size + 1); // Increments modCount!!
// 赋值
elementData[size++] = e;
return true;
}
/**
* 在此列表中的指定位置插入指定的元素
* 再将从index开始之后的所有成员后移一个位置;将element插入index位置;最后size加1。
*/
public void add(int index, E element) {
// 调用 rangeCheckForAdd 对 index 进行范围检查
rangeCheckForAdd(index);
// 保证容量足够
ensureCapacityInternal(size + 1); // Increments modCount!!
// 自己复制自己,然后达到 index 之后全部元素向后挪一位的效果
System.arraycopy(elementData, index, elementData, index + 1,
size - index);
// 然后将 index 赋值为指定的元素
elementData[index] = element;
size++;
}
/**
* 移除该列表中指定位置的元素。 将任何后续元素移动到左侧(从其索引中减去一个元素)。
*/
public E remove(int index) {
// 调用 rangeCheckForAdd 对 index 进行范围检查
rangeCheck(index);
modCount++;
// 找到待移除的值
E oldValue = elementData(index);
// 计算出需要移动元素的数量
int numMoved = size - index - 1;
if (numMoved > 0)
// 同样复制自己,使得被移除元素右侧的元素整体向左移动
System.arraycopy(elementData, index+1, elementData, index,
numMoved);
elementData[--size] = null; // clear to let GC do its work
return oldValue;
}
/**
* 从集合中移除第一次出现的指定元素
*/
public boolean remove(Object o) {
if (o == null) {
for (int index = 0; index < size; index++)
if (elementData[index] == null) {
fastRemove(index);
return true;
}
} else {
// 也很简单,就是一个循环 equals 判断,然后移除
for (int index = 0; index < size; index++)
if (o.equals(elementData[index])) {
fastRemove(index);
return true;
}
}
return false;
}
/*
* 跳过范围检查的删除方式,与remove(Object o)相同
*/
private void fastRemove(int index) {
modCount++;
int numMoved = size - index - 1;
if (numMoved > 0)
System.arraycopy(elementData, index+1, elementData, index,
numMoved);
elementData[--size] = null; // clear to let GC do its work
}
/**
* 从列表中删除所有元素。
*/
public void clear() {
modCount++;
// clear to let GC do its work
for (int i = 0; i < size; i++)
// 元素全部设为 null
elementData[i] = null;
// 长度设为 0
size = 0;
}
/**
* 按指定集合的Iterator返回的顺序
* 将指定集合中的所有元素追加到此列表的末尾。
*/
public boolean addAll(Collection<? extends E> c) {
// 转为数组
Object[] a = c.toArray();
// 拿到待添加指定数组的长度
int numNew = a.length;
// 确认 list 容量,尝试容量加上 numNew,看看有无必要扩容
ensureCapacityInternal(size + numNew); // Increments modCount
// 利用 arraycopy 指定数组a的元素追加到当前数组 elementData 后
System.arraycopy(a, 0, elementData, size, numNew);
size += numNew;
return numNew != 0;
}
/**
* 按指定集合的Iterator返回的顺序
* 将指定集合中的所有元素添加到此列表中,从指定位置开始
*
*/
public boolean addAll(int index, Collection<? extends E> c) {
rangeCheckForAdd(index);
Object[] a = c.toArray();
int numNew = a.length;
ensureCapacityInternal(size + numNew); // Increments modCount
// 计算需要移动的元素
int numMoved = size - index;
if (numMoved > 0)
// 实现元素指定位置的插入,本质还是 arraycopy 自身
System.arraycopy(elementData, index, elementData, index + numNew,
numMoved);
System.arraycopy(a, 0, elementData, index, numNew);
size += numNew;
return numNew != 0;
}
/**
* 删除指定索引范围内的元素(fromIndex - toIndex)
* 将任何后续元素移动到左侧(减少其索引)。
*/
protected void removeRange(int fromIndex, int toIndex) {
modCount++;
int numMoved = size - toIndex;
System.arraycopy(elementData, toIndex, elementData, fromIndex,
numMoved);
// clear to let GC do its work
int newSize = size - (toIndex-fromIndex);
for (int i = newSize; i < size; i++) {
elementData[i] = null;
}
size = newSize;
}
/**
* 检查给定的索引是否在范围内。
*/
private void rangeCheck(int index) {
// 下标越界就直接抛异常
if (index >= size)
throw new IndexOutOfBoundsException(outOfBoundsMsg(index));
}
/**
* 另一个版本,针对add 和 addAll使用
*/
private void rangeCheckForAdd(int index) {
if (index > size || index < 0)
throw new IndexOutOfBoundsException(outOfBoundsMsg(index));
}
/**
* 与上面套娃使用
*/
private String outOfBoundsMsg(int index) {
return "Index: "+index+", Size: "+size;
}
/**
* 从此列表中删除指定集合中包含的所有元素。
*/
public boolean removeAll(Collection<?> c) {
Objects.requireNonNull(c);
return batchRemove(c, false);
}
/**
* 仅保留此列表中包含在指定集合中的元素。即删掉没有的部分
*/
public boolean retainAll(Collection<?> c) {
Objects.requireNonNull(c);
return batchRemove(c, true);
}
/**
* 删除的具体逻辑,下面会有专题讲解
*/
private boolean batchRemove(Collection<?> c, boolean complement) {
final Object[] elementData = this.elementData;
int r = 0, w = 0;
boolean modified = false;
try {
for (; r < size; r++)
// 通过循环判断数组中有没有指定数组中的每一个值,complement 是参数传递的
if (c.contains(elementData[r]) == complement)
// 就将原数组的r位置的数据覆盖掉w位置的数据
// r位置的数据不变,并其w自增,r自增
// 否则,r自增,w不自增
// 本质:把需要移除的数据都替换掉,不需要移除的数据前移
elementData[w++] = elementData[r];
} finally {
// Preserve behavioral compatibility with AbstractCollection,
// even if c.contains() throws.
if (r != size) {
System.arraycopy(elementData, r,
elementData, w,
size - r);
w += size - r;
}
if (w != size) {
// clear to let GC do its work
for (int i = w; i < size; i++)
elementData[i] = null;
modCount += size - w;
size = w;
modified = true;
}
}
return modified;
}
// writeObject readObject 序列化相关的省略
/**
* 列表迭代器:List集合特有的迭代器
*/
public ListIterator<E> listIterator(int index) {
if (index < 0 || index > size)
throw new IndexOutOfBoundsException("Index: "+index);
return new ListItr(index);
}
public ListIterator<E> listIterator() {
return new ListItr(0);
}
// foreach 遍历等同于 iterator
public Iterator<E> iterator() {
return new Itr();
}
private class Itr implements Iterator<E> {
// 下一个要访问的元素下标
int cursor;
// 上一个要访问的元素下标
int lastRet = -1;
// 代表对 ArrayList 修改次数的期望值,初始值为 modCount
int expectedModCount = modCount;
Itr() {}
// 下标如果
public boolean hasNext() {
return cursor != size;
}
/**
* 刚开始cursor = 0,lastRet = -1
* 整个过程结束 cursor 和 lastRet 都会自增 1
*/
@SuppressWarnings("unchecked")
public E next() {
// 跳转本质是判断 modCount 是否等于 expectedModCount
checkForComodification();
int i = cursor;
// 判断 cursor 是否超过集合大小和数组长度
if (i >= size)
throw new NoSuchElementException();
Object[] elementData = ArrayList.this.elementData;
if (i >= elementData.length)
throw new ConcurrentModificationException();
cursor = i + 1;
// 将 cursor 赋值给 lastRet,然后把此下标处的元素返回
return (E) elementData[lastRet = i];
}
public void remove() {
// 先判断 lastRet 的值是否小于 0
if (lastRet < 0)
throw new IllegalStateException();
// 跳转本质是判断 modCount 是否等于 expectedModCount
checkForComodification();
try {
// 直接调用 ArrayList 的 remove 方法删除下标为 lastRet 的元素
ArrayList.this.remove(lastRet);
cursor = lastRet;
lastRet = -1;
expectedModCount = modCount;
} catch (IndexOutOfBoundsException ex) {
throw new ConcurrentModificationException();
}
}
// forEachRemaining 略
final void checkForComodification() {
if (modCount != expectedModCount)
throw new ConcurrentModificationException();
}
}
3. 重点内容分析
3.1 扩容机制再分析
回到顶部
3.1.1 ArrayList 是如何被初始化的
ArrayList 提供了 1 个无参构造和 2 个带参构造来初始化 ArrayList ,我们在创建 ArrayList 时,经常使用无参构造的方式,其本质就是初始化了一个空数组,直到向数组内真的添加元素的时候才会真的去分配容量。例如:向数组中添加第一个元素,数组容量扩充为 10
补充:JDK7 无参构造 初始化 ArrayList 对象时,直接创建了长度是 10 的 Object[] 数组elementData
回到顶部
3.1.2 扩容机制流程分析(无参构造为例)
3.1.2.1 add()
一般来说,都是通过 add 方法触发扩容机制,我们拿最简单的尾部追加的 add() 方法举例
/**
* 将指定的元素追加到此列表的末尾。
*/
public boolean add(E e) {
// 确认 list 容量,尝试容量加 1,看看有无必要扩容
ensureCapacityInternal(size + 1); // Increments modCount!!
// 赋值
elementData[size++] = e;
return true;
}
核心要点就这一句 ensureCapacityInternal(size + 1);
3.1.2.2 ensureCapacityInternal()
追踪进去
/**
* 得到最小扩容量
*/
private void ensureCapacityInternal(int minCapacity) {
ensureExplicitCapacity(calculateCapacity(elementData, minCapacity));
}
方法内调用了 ensureExplicitCapacity() 方法,参数是 calculateCapacity(elementData, minCapacity)
先来分析一下这个参数的结果是什么,聚焦到 calculateCapacity() 方法中去
3.1.2.3 calculateCapacity()
/**
* 计算最小扩容量(被调用)
*/
private static int calculateCapacity(Object[] elementData, int minCapacity) {
// 如果元素数组为默认的空
if (elementData == DEFAULTCAPACITY_EMPTY_ELEMENTDATA) {
// 获取“默认的容量”和“传入参数 minCapacity ”两者之间的最大值
return Math.max(DEFAULT_CAPACITY, minCapacity);
}
return minCapacity;
}
也很简单,就是为了计算出一个最小扩容量,当元素为初次初始化时,数组还没进过扩容,是一个空数组,所以会走 if 这个判断,而且当时传入的 size + 1 也就是 minCapacity 的值为 0 + 1 = 1 ,经过一个取大值的操作,与默认的 DEFAULT_CAPACITY 进行比对,自然返回的就是 10。
如果数组已经不是为空了,就直接返回一个 minCapacity (size + 1)就可以了
3.1.2.4 ensureExplicitCapacity
ensureCapacityInternal 方法内调用了 ensureExplicitCapacity(参数已经计算出来了) 方法
继续去看它
/**
* 判断是否需要扩容
*/
private void ensureExplicitCapacity(int minCapacity) {
modCount++;
// overflow-conscious code
// 如果最小容量比数组的长度还大
if (minCapacity - elementData.length > 0)
// 就调用grow方法进行扩容
grow(minCapacity);
}
此方法的核心就是 if 判断这个数组需不需要扩容,可以分为三种情况
add 第 1 个元素时:此时数组还只是一个被初始化过的空数组,minCapacity 经过 calculateCapacity 计算会返回 DEFAULT_CAPACITY 的默认值 10,而 elementData.length 也自然是 0,所以 minCapacity - elementData.length > 0 是成立的,直接进入 grow(minCapacity); 开始扩容。
add 第 2 到 10 个元素的时候(以 2 举例):此时 minCapacity = size + 1 = 1 + 1 = 2 ,而 elementData.length 已经在添加第 1 个元素后等于 10 了。所以 minCapacity - elementData.length > 0 就不成立了,所以不会进入 grow(minCapacity); ,也不会扩容
添加第 3 ... 10 个元素的时候,都是一样的。
add 第 11 个元素的时候,minCapacity 变成了 11,比 10 还要大,所以又一次进去扩容了
3.1.2.5 grow()
这里是真正去执行扩容逻辑的代码
/**
* 要分配的最大数组大小
*/
private static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8;
/**
* ArrayList 扩容的核心方法
*/
private void grow(int minCapacity) {
// 将当前元素数组长度定义为 oldCapacity 旧容量
int oldCapacity = elementData.length;
// 新容量更新为旧容量的1.5倍
// oldCapacity >> 1 为按位右移一位,相当于 oldCapacity 除以2的1次幂
int newCapacity = oldCapacity + (oldCapacity >> 1);
// 然后检查新容量是否大于最小需要容量,若还小,就把最小需要容量当作数组的新容量
if (newCapacity - minCapacity < 0)
newCapacity = minCapacity;
// 再检查新容量是否超出了ArrayList 所定义的最大容量
if (newCapacity - MAX_ARRAY_SIZE > 0)
// 若超出,则调用hugeCapacity()
newCapacity = hugeCapacity(minCapacity);
elementData = Arrays.copyOf(elementData, newCapacity);
}
扩容的核心就是这句:int
newCapacity = oldCapacity + (oldCapacity >> 1);
本质就是扩容 1.5 倍,而且其中使用了移位运算,这里从计算的角度上来看,相当于 oldCapacity 除以 2 的 1 次幂(偶数除以 2 刚好除尽,奇数丢掉小数部分)。使用按位右移,效率会高很多
>> 按位右移运算符:最高位为 0,左边补齐 0,最高位是 1,左边补齐 1
快速计算:把 >> 左边的数据 除以 2 的移动次幂:例如 -24 >> 2 即:-24 / 2 ^ 2 = -6
—— 此项目 【001-Java基础知识】 章节中有具体介绍
扩容后,需要对这个新容量的范围进行一个判断,不能小于最小需要容量,也不能大于定义的最大容量,分情况细细看一下(以 1 和 11 举例,是因为这两种都是刚好需要扩容的)
add 第 1 个元素的时候,数组还为空,所以无论是 oldCapacity 还是 newCapacity 都是 0,经过第一次判断后,newCapacity = minCapacity 执行了,此时 newCapacity 为 10,第二个判断不会进入,它不可能大于数组的最大容量。
add 第 11 个元素的时候,oldCapacity 为 10,newCapacity = 10 + 10/2 = 15,大于 minCapacity = 11,第一个判断不会进入,同时它肯定也没有大于数组最大 size,不会进入 。数组容量此时就扩为 15,add 方法中会返回一个 true,size 也增加成 11。
后面都是同样的道理 ...
3.1.2.6 hugeCapacity()
这个方法就是在 newCapacity 大于 MAX_ARRAY_SIZE 的时候,开始判断 minCapacity 和 MAX_ARRAY_SIZE 谁大,然后赋予不同的值。
/**
* 比较minCapacity和 MAX_ARRAY_SIZE
*/
private static int hugeCapacity(int minCapacity) {
if (minCapacity < 0) // overflow
throw new OutOfMemoryError();
return (minCapacity > MAX_ARRAY_SIZE) ?
Integer.MAX_VALUE :
MAX_ARRAY_SIZE;
}
3.2 System.arraycopy() 和 Arrays.copyOf() 复制方法
在前面的方法中,大量的用到了这两个方法,基本但凡涉及到元素移动的都会用到。
回到顶部
3.2.1 System.arraycopy()
拿 add 方法中的举例
/**
* 在此列表中的指定位置插入指定的元素
* 再将从index开始之后的所有成员后移一个位置;将element插入index位置;最后size加1。
*/
public void add(int index, E element) {
// 调用 rangeCheckForAdd 对 index 进行范围检查
rangeCheckForAdd(index);
// 保证容量足够
ensureCapacityInternal(size + 1); // Increments modCount!!
// 自己复制自己,然后达到 index 之后全部元素向后挪一位的效果
System.arraycopy(elementData, index, elementData, index + 1,
size - index);
// 然后将 index 赋值为指定的元素
elementData[index] = element;
size++;
}
arraycopy 是 System类 中的一个方法
/**
* 数组复制
* src - 源数组。
* srcPos - 源数组中的起始位置。
* dest - 目标数组。
* destPos - 目的地数据中的起始位置。
* length - 要复制的数组元素的数量。
*/
public static void arraycopy(Object src, int srcPos, Object dest, int destPos, int length)
举例:
public static void main(String[] args) {
int[] arr = new int[10];
arr[0] = 11;
arr[1] = 22;
arr[2] = 33;
arr[3] = 44;
arr[4] = 55;
System.out.println("前:" + Arrays.toString(arr));
// 指定下标后向后挪动一位
System.arraycopy(arr, 1, arr, 2, 4);
// 指定下标处替换元素
arr[1] = 666;
System.out.println("后:" + Arrays.toString(arr));
}
运行结果:
前:[11, 22, 33, 44, 55, 0, 0, 0, 0, 0]
后:[11, 666, 22, 33, 44, 55, 0, 0, 0, 0]
这样就实现了 add 中的一个指定下标插入操作(不考虑扩容)
回到顶部
3.2.2 Arrays.copyOf()
所以,可以简单的认为,这个方法的目的只要是为了给原数组扩容。
public static void main(String[] args) {
int[] arr1 = {1, 2, 3, 4, 5};
int[] arr2 = Arrays.copyOf(arr1, 5);
int[] arr3 = Arrays.copyOf(arr1, 10);
System.out.println(Arrays.toString(arr1));
System.out.println(Arrays.toString(arr2));
System.out.println(Arrays.toString(arr3));
}
运行结果:
[1, 2, 3, 4, 5]
[1, 2, 3, 4, 5]
[1, 2, 3, 4, 5, 0, 0, 0, 0, 0]
3.3 removeAll() 和 retainAll() 中的 batchRemove() 方法
在 removeAll() 和 retainAll() 方法中,都调用了 batchRemove()方法,区别只是传参不同,就能实现两种不同的正反删除效果
/**
* 从此列表中删除指定集合中包含的所有元素。
*/
public boolean removeAll(Collection<?> c) {
Objects.requireNonNull(c);
return batchRemove(c, false);
}
/**
* 仅保留此列表中包含在指定集合中的元素。即删掉没有的部分
*/
public boolean retainAll(Collection<?> c) {
Objects.requireNonNull(c);
return batchRemove(c, true);
}
来重点看一下这个方法的源码
/**
* 删除的具体逻辑,下面会有专题讲解
*/
private boolean batchRemove(Collection<?> c, boolean complement) {
final Object[] elementData = this.elementData;
int r = 0, w = 0;
boolean modified = false;
try {
for (; r < size; r++)
if (c.contains(elementData[r]) == complement)
elementData[w++] = elementData[r];
} finally {
if (r != size) {
System.arraycopy(elementData, r,
elementData, w,
size - r);
w += size - r;
}
if (w != size) {
for (int i = w; i < size; i++)
elementData[i] = null;
modCount += size - w;
size = w;
modified = true;
}
}
return modified;
}
解释一下刚开始的那些字段
size :原数组长度
elementData: 原数组
modCount : 从父类继承过来的变量,作用是记录着集合的修改次数。
来看第一个关键代码
for (; r < size; r++)
if (c.contains(elementData[r]) == complement)
elementData[w++] = elementData[r];
我们以 removeAll() 为例,意图从此列表中删除指定集合中包含的所有元素。即,有的就删,没有的就不删。
所以 complement 经过参数传递过来自然是 false,所以参数指定数组中不含有原数组指定位置下标的数据的时候,就将 elementData[r] 位置的数据覆盖掉 elementData[w++] 位置的数据,r 根据循环++自增,w 根据变量 w++ 自增,若 if 表达式不成立则,r 自增,w 不自增。
举例:原数组:[1, 2, 3, 4, 5, 6, 7, 8, 9] ,指定参数数组: [a, b, c, 3, 5, 8, f](例子参考自)重新排版
循环次数 r w 布尔值 赋值语句 替换后的数组值 说明
1 0 0 true elementData[0]=elementData[0] [1, 2, 3, 4, 5, 6, 7, 8, 9] 1 替换 1,r++ ,w++
2 1 1 true elementData[1]=elementData[1] [1, 2, 3, 4, 5, 6, 7, 8, 9] 2 替换 2,r++ ,w++
3 2 2 false [1, 2, 3, 4, 5, 6, 7, 8, 9]
4 3 2 true elementData[2]=elementData[3] [1, 2, 4, 4, 5, 6, 7, 8, 9] 4 替换 3,r++ ,w++
5 4 3 false [1, 2, 4, 4, 5, 6, 7, 8, 9]
6 5 3 true elementData[3]=elementData[5] [1, 2, 4, 6, 5, 6, 7, 8, 9] 6 替换 4,r++ ,w++
7 6 4 true elementData[4]=elementData[6] [1, 2, 4, 6, 7, 6, 7, 8, 9] 7 替换 5,r++ ,w++
8 7 5 false [1, 2, 4, 6, 7, 6, 7, 8, 9]
9 8 5 true elementData[5]=elementData[8] [1, 2, 4, 6, 7, 9, 7, 8, 9] 9 替换 6,r++ ,w++
9 6
自己走一遍上面的逻辑,就能深刻的感受得到
这步的作用:把需要移除的数据都替换掉,不需要移除的数据前移。(这步的处理尤为重要!)
接下来进入 finally 中,这一段是最终肯定会执行的
if (r != size) {
System.arraycopy(elementData, r,elementData, w,size - r);
w += size - r;
}
if (w != size) {
for (int i = w; i < size; i++)
elementData[i] = null;
modCount += size - w;
size = w;
modified = true;
}
首先判断 r 是否等于 size,如果上面的循环正常执行结束,r 和 size 应该是相同的,所以肯定不会走上面,第一个 if 判断的目的就是为了解决某种异常情况下(异常,并发修改)导致的 for 循环未结束,此时 r != size 所以通过 arraycopy 将添加的元素追加到w索引后面。
而第二个 if ,主要是为了把 w 之后没处理过的给删掉,这样就可以达到目的了。
例如上面表格的例子,最后 w = 6,也就是 [1, 2, 4, 6, 7, 9, 7, 8, 9] 中从下标为 6 的元素 7 开始删除,将 7,8,9 赋值为 null 后面会被 GC 清理掉。最后得到的结果 [1, 2, 4, 6, 7, 9] 就是清除过的了 。
3.4 并发修改异常问题探索
public static void main(String[] args) {
// 创建集合对象
List list = new ArrayList();
// 存储元素
list.add("I");
list.add("love");
list.add("you");
Iterator it = list.iterator();
while (it.hasNext()) {
String s = (String) it.next();
if ("love".equals(s)) {
list.add("❤");
}
System.out.println(s);
}
}
//运行结果(节选)
Exception in thread "main" java.util.ConcurrentModificationException
使用增强for或者迭代器遍历集合的时候,如果对集合进行 list的 remove 和 add 操作,会出现 ConcurrentModificationException 并发修改异常的问题。
回到顶部
3.4.1 原因解释:
当我们对集合进行遍历的时候,我们会获取当前集合的迭代对象
//List为例,获取集合的迭代对象
Iterator it = list.iterator();
这个迭代对象中,封装了迭代器的方法与集合本身的一些方法,当我们在迭代中使用集合本身的add / remove方法的时候,就产生了ConcurrentModificationException异常,通俗的说就是,在判断 equals 成功后,执行了 list 的 add / remove 方法, 操作集合中元素或者删除增加了,但是迭代器不清楚,所以就报错,如果迭代器中含有这一种方法(假设),我们是用迭代器添加元素就不会有问题了。
详细解释:
开始时,cursor 指向下标为 0 的元素,lastRet 指向下标为 -1 的元素,每次调用 next 方法,cursor 和 lastRet 会分别自增 1。
当突然 ArrayList 的 remove 方法被调用(不是 Itr 的 remove),会导致被删除元素后面的所有元素都会往前移动一位,且 modCount 这个修改次数会增加,继续循环,去执行 next 方法,而 next 方法中首先判断的就是 modCount 和 expectedModCount 是否相等,很明显由于 ArrayList 的操作,导致 modCount 变化,两者现在已经不等了,所以出现异常
final void checkForComodification() {
if (modCount != expectedModCount)
throw new ConcurrentModificationException();
}
针对这个问题,我们给出两个解决方案
回到顶部
3.4.2 解决方案:
3.4.2.1 方式1:迭代器迭代元素,迭代器修改元素
我们假想如果Iterator迭代器中有添加或者删除等功能就好了,但很遗憾并没有,但是它的子接口 ListIterator 却拥有 add 这个功能(ListIterator 拥有 add、set、remove 方法,Iterator 拥有 remove 方法,这里只演示 add 方法,remove 方法就用原来的 Iterator .remove() )
ListIterator 的 add()和 Iterator 的 remove() 可以使用的原因都是因为,方法进行了添加删除操作后,都会执行 expectedModCount = modCount 这样的赋值操作,相当于告诉迭代器我进行了修改操作。
public static void main(String[] args) {
// 创建集合对象
List list = new ArrayList();
// 存储元素
list.add("I");
list.add("love");
list.add("you");
ListIterator lit = list.listIterator();
while (lit.hasNext()) {
String s = (String) lit.next();
if ("love".equals(s)) {
// add 、remove 都是可以的
lit.add("❤");
}
System.out.print(s + " ");
}
System.out.println();
for (Object l : list){
System.out.print(l + " ");
}
}
//运行结果
I love you
I love ❤ you
3.4.2.1 方式2:集合遍历元素,集合修改元素(普通for)
import java.util.ArrayList;
import java.util.List;
import java.util.ListIterator;
public class Demo2 {
public static void main(String[] args) {
//创建集合对象
List list = new ArrayList();
//存储元素
list.add("I");
list.add("love");
list.add("you");
for (int x = 0; x < list.size(); x++){
String s = (String)list.get(x);
if ("love".equals(s)){
list.add("❤");
}
System.out.print(s + " ");
}
}
}
//运行结果
I love you ❤
USB Microphone https://www.soft-voice.com/
Wooden Speakers https://www.zeshuiplatform.com/
亚马逊测评 www.yisuping.cn
深圳网站建设www.sz886.com