一. SolidWorks中的向量计算和变换
- SolidWorks 提供了一个IMathUtility 来提供几何计算和矩阵变换.但在有些情况下不能满足计算需求或者计算起来比较繁琐.
此处使用 C# 的扩展方法扩展了一部分向量计算, 也重新定义了向量对象以便进行更方便有效的操作.
二. 使用方法
- 将文章后面的代码配置如下
- 引用自己类的命名空间边可以使用扩展的api
MathUtility 扩展方法:
转换为自定义向量类将可以使用更多的计算方法:
三. 配置方法- 自己创建向量类和向量计算方法
2.1 添加一个通用配置类来配置一些计算常量的 IMathUtility的访问
public class MathUtil
{
public static MathUtility swMathUtility { get; set; }
public const double Epsilon = 2.2204460492503131e-016;
/// <summary>
/// 每弧度代表的角度
/// </summary>
public const double Rad2Deg = (180.0 / System.Math.PI);
public const double ZeroTolerance = 1e-08;
public static double Clamp(double f, double low, double high)
{
return (f < low) ? low : (f > high) ? high : f;
}
}
2.2 添加一个Vector2 的平面向量类,具体实现如下
public class Vector2
{
public double X { get; set; }
public double Y { get; set; }
public Vector2(double x,double y)
{
X = x;
Y = y;
}
/// <summary>
/// 角度转换为弧度
/// </summary>
/// <param name="angle"></param>
/// <returns></returns>
public static Vector2 FromAngleRad(double angle)
{
return new Vector2(System.Math.Cos(angle), System.Math.Sin(angle));
}
/// <summary>
/// 长度平方值
/// </summary>
public double LengthSquared
{
get { return X * X + Y * Y; }
}
/// <summary>
/// 长度
/// </summary>
public double Length
{
get { return (double)System.Math.Sqrt(LengthSquared); }
}
/// <summary>
/// 单位化
/// </summary>
/// <param name="epsilon"></param>
/// <returns></returns>
public double Normalize(double epsilon = MathUtil.Epsilon)
{
double length = Length;
if (length > epsilon) {
double invLength = 1.0 / length;
X *= invLength;
Y *= invLength;
} else {
length = 0;
X = Y = 0;
}
return length;
}
public bool IsFinite
{
get { double f = X + Y; return double.IsNaN(f) == false && double.IsInfinity(f) == false; }
}
/// <summary>
/// 点乘
/// </summary>
/// <param name="v2"></param>
/// <returns></returns>
public double Dot(Vector2 v2)
{
return X * v2.X + Y * v2.Y;
}
/// <summary>
/// 叉乘
/// </summary>
/// <param name="v2"></param>
/// <returns></returns>
public double Cross(Vector2 v2)
{
return X * v2.Y - Y * v2.X;
}
/// <summary>
/// 求与另外一个向量角度--单位度deg
/// </summary>
/// <param name="v2"></param>
/// <returns></returns>
public double AngleD(Vector2 v2)
{
double fDot = MathUtil.Clamp(Dot(v2), -1, 1);
return System.Math.Acos(fDot) * MathUtil.Rad2Deg;
}
/// <summary>
/// 两个向量角度--单位度deg
/// </summary>
/// <param name="v1"></param>
/// <param name="v2"></param>
/// <returns></returns>
public static double AngleD(Vector2 v1, Vector2 v2)
{
return v1.AngleD(v2);
}
/// <summary>
/// 求与另外一个向量角度--单位弧度Rad
/// </summary>
/// <param name="v2"></param>
/// <returns></returns>
public double AngleR(Vector2 v2)
{
double fDot = MathUtil.Clamp(Dot(v2), -1, 1);
return System.Math.Acos(fDot);
}
/// <summary>
/// 两个向量角度--单位弧度Rad
/// </summary>
/// <param name="v1"></param>
/// <param name="v2"></param>
/// <returns></returns>
public static double AngleR(Vector2 v1, Vector2 v2)
{
return v1.AngleR(v2);
}
/// <summary>
/// 圆整
/// </summary>
/// <param name="nDecimals"></param>
public void Round(int nDecimals)
{
X = System.Math.Round(X, nDecimals);
Y = System.Math.Round(Y, nDecimals);
}
public double DistanceSquared(Vector2 v2)
{
double dx = v2.X - X, dy = v2.Y - Y;
return dx * dx + dy * dy;
}
public double Distance(Vector2 v2)
{
double dx = v2.X - X, dy = v2.Y - Y;
return System.Math.Sqrt(dx * dx + dy * dy);
}
public void Set(Vector2 o)
{
X = o.X; Y = o.Y;
}
public void Set(double fX, double fY)
{
X= fX; Y = fY;
}
public void Add(Vector2 o)
{
X+= o.X; Y += o.Y;
}
public void Subtract(Vector2 o)
{
X -= o.X; Y -= o.Y;
}
}
2.3 添加三维向量计算类Vector
- 具体实现如下
public class Vector3
{
private double x;
private double y;
private double z;
public double X { get => x; set => x = value; }
public double Y { get => y; set => y = value; }
public double Z { get => z; set => z = value; }
public static Vector3 Zero { get; internal set; }
public static Vector3 UnitZ { get; internal set; }
public Vector3(double[] arrayData)
{
if (arrayData.Length >= 3)
{
this.X = arrayData[0];
this.Y = arrayData[1];
this.Z = arrayData[2];
}
}
public Vector3(double v1, double v2, double v3)
{
this.X = v1;
this.Y = v2;
this.Z = v3;
}
public Vector2 xy
{
get { return new Vector2(x, y); }
set { x = value.X; y = value.Y; }
}
public Vector2 xz
{
get { return new Vector2(x, z); }
set { x = value.X; z = value.Y; }
}
public Vector2 yz
{
get { return new Vector2(y, z); }
set { y = value.X; z = value.Y; }
}
public double LengthSquared
{
get { return x * x + y * y + z * z; }
}
public double Length
{
get { return System.Math.Sqrt(LengthSquared); }
}
public double[] ToDoubles()
{
return new double[] { X, Y, Z };
}
public MathPoint ToSwMathPoint(MathUtility math = null)
{
if (math == null)
{
math = MathUtil.swMathUtility;
}
if (math == null)
{
throw new NullReferenceException("MathUtility未将对象引用到对象的实例");
}
return math.CreatePoint(ToDoubles());
}
/// <summary>
/// 求三个坐标的绝对值长度和
/// </summary>
public double LengthL1
{
get { return System.Math.Abs(x) + System.Math.Abs(y) + System.Math.Abs(z); }
}
public double Max
{
get { return System.Math.Max(x, Math.Max(y, z)); }
}
public double Min
{
get { return Math.Min(x, Math.Min(y, z)); }
}
public double MaxAbs
{
get { return Math.Max(Math.Abs(x), Math.Max(Math.Abs(y), Math.Abs(z))); }
}
public double MinAbs
{
get { return Math.Min(Math.Abs(x), Math.Min(Math.Abs(y), Math.Abs(z))); }
}
public Vector3 Abs
{
get { return new Vector3(Math.Abs(x), Math.Abs(y), Math.Abs(z)); }
}
public double Normalize(double epsilon = MathUtil.Epsilon)
{
double length = Length;
if (length > epsilon)
{
double invLength = 1.0 / length;
x *= invLength;
y *= invLength;
z *= invLength;
}
else
{
length = 0;
x = y = z = 0;
}
return length;
}
public Vector3 Unit(double epsilon = MathUtil.Epsilon)
{
double length = Length;
if (length > MathUtil.Epsilon)
{
double invLength = 1.0 / length;
return new Vector3(x * invLength, y * invLength, z * invLength);
}
else
return Vector3.Zero;
}
public bool IsNormalized
{
get { return Math.Abs((x * x + y * y + z * z) - 1) < MathUtil.ZeroTolerance; }
}
public bool IsFinite
{
get { double f = x + y + z; return double.IsNaN(f) == false && double.IsInfinity(f) == false; }
}
public void Round(int nDecimals)
{
x = Math.Round(x, nDecimals);
y = Math.Round(y, nDecimals);
z = Math.Round(z, nDecimals);
}
public double Dot(Vector3 v2)
{
return x * v2.x + y * v2.y + z * v2.z;
}
public double Dot(ref Vector3 v2)
{
return x * v2.x + y * v2.y + z * v2.z;
}
public static double Dot(Vector3 v1, Vector3 v2)
{
return v1.Dot(ref v2);
}
public Vector3 Cross(Vector3 v2)
{
return new Vector3(
y * v2.z - z * v2.y,
z * v2.x - x * v2.z,
x * v2.y - y * v2.x);
}
public Vector3 Cross(ref Vector3 v2)
{
return new Vector3(
y * v2.z - z * v2.y,
z * v2.x - x * v2.z,
x * v2.y - y * v2.x);
}
public static Vector3 Cross(Vector3 v1, Vector3 v2)
{
return v1.Cross(ref v2);
}
/// <summary>
/// 叉乘后单位化
/// </summary>
/// <param name="v2"></param>
/// <returns></returns>
public Vector3 UnitCross(ref Vector3 v2)
{
Vector3 n = new Vector3(
y * v2.z - z * v2.y,
z * v2.x - x * v2.z,
x * v2.y - y * v2.x);
n.Normalize();
return n;
}
/// <summary>
/// 叉乘后单位化
/// </summary>
/// <param name="v2"></param>
/// <returns></returns>
public Vector3 UnitCross(Vector3 v2)
{
return UnitCross(ref v2);
}
public double AngleD(Vector3 v2)
{
double fDot = MathUtil.Clamp(Dot(v2), -1, 1);
return Math.Acos(fDot) * MathUtil.Rad2Deg;
}
public static double AngleD(Vector3 v1, Vector3 v2)
{
return v1.AngleD(v2);
}
public double AngleR(Vector3 v2)
{
double fDot = MathUtil.Clamp(Dot(v2), -1, 1);
return Math.Acos(fDot);
}
public static double AngleR(Vector3 v1, Vector3 v2)
{
return v1.AngleR(v2);
}
public double DistanceSquared(Vector3 v2)
{
double dx = v2.x - x, dy = v2.y - y, dz = v2.z - z;
return dx * dx + dy * dy + dz * dz;
}
public double DistanceSquared(ref Vector3 v2)
{
double dx = v2.x - x, dy = v2.y - y, dz = v2.z - z;
return dx * dx + dy * dy + dz * dz;
}
public double Distance(Vector3 v2)
{
double dx = v2.x - x, dy = v2.y - y, dz = v2.z - z;
return Math.Sqrt(dx * dx + dy * dy + dz * dz);
}
public double Distance(ref Vector3 v2)
{
double dx = v2.x - x, dy = v2.y - y, dz = v2.z - z;
return Math.Sqrt(dx * dx + dy * dy + dz * dz);
}
public void Set(Vector3 o)
{
x = o.x; y = o.y; z = o.z;
}
public void Set(double fX, double fY, double fZ)
{
x = fX; y = fY; z = fZ;
}
public Vector3 Add(Vector3 vector3)
{
return new Vector3(x + vector3.x, y + vector3.y, z + vector3.z);
}
public Vector3 Scale(double length)
{
return new Vector3(x * length, y * length, z * length);
}
}
四. 配置SolidWorks 计算类的扩展方法
4.1 扩展 MathUtility
public static class MathUtilityExtension
{
public static MathPoint PointEx(this MathUtility math, double[] value)
{
return math.CreatePoint(value);
}
public static MathVector ZAxis(this MathUtility math)
{
return math.CreateVector(new double[] { 0, 0, 1 });
}
public static MathVector XAxis(this MathUtility math)
{
return math.CreateVector(new double[] { 1, 0, 0 });
}
public static MathVector YAxis(this MathUtility math)
{
return math.CreateVector(new double[] { 0, 1, 0 });
}
}
4.2 扩展 MathPoint
- 具体实现如下
public static class MathPointExtension
{
/// <summary>
/// 转换到Vector3
/// </summary>
/// <param name="mathPoint"></param>
/// <returns></returns>
public static Vector3 ToVector3(this MathPoint mathPoint)
{
return new Vector3((double[])mathPoint.ArrayData);
}
/// <summary>
/// 计算在某轴上的投影
/// </summary>
/// <param name="point"></param>
/// <param name="origin"></param>
/// <param name="axis"></param>
/// <returns></returns>
public static MathPoint Project(this IMathPoint point, IMathPoint origin, IMathVector axis)
{
var a = (IMathVector)point.Subtract(origin);
var t = a.Project(axis);
var v = (MathVector)axis.Scale(t);
return (MathPoint)origin.AddVector(v);
}
public static MathVector SubtractTs(this IMathPoint a, IMathPoint b)
{
return (MathVector)a.Subtract(b);
}
public static MathVector SubtractTs(this IMathVector a, IMathVector b)
{
return (MathVector)a.Subtract(b);
}
/// <summary>
/// 此点在 XY Plane 中的角度
/// </summary>
/// <param name="p"></param>
/// <returns></returns>
public static double Angle2D(this IMathPoint p)
{
var pData = p.ArrayData.CastArray<double>();
var angle = System.Math.Atan2(pData[1], pData[0]);
return angle < 0.0 ? angle + 2 * System.Math.PI : angle;
}
}
4.3 扩展 MathVector
public static class MathVectorExtension
{
/// <summary>
/// a X b => 投影到 b
/// gives the multiplier for b which would be the projection of a on b
/// </summary>
/// <param name="a"></param>
/// <param name="b"></param>
/// <returns></returns>
public static double Project(this IMathVector a, IMathVector b)
{
return a.Dot(b) / (b.Dot(b));
}
public static Vector3 ToVector3(this MathVector mathvector)
{
return new Vector3((double[])mathvector.ArrayData);
}
public static double LengthOfProjectionXY(this double[] vector)
{
return System.Math.Sqrt(vector.Take(2).Sum(c => System.Math.Pow(c, 2)));
}
/// <summary>
/// 两个向量之间的角度
/// </summary>
/// <param name="v0"></param>
/// <param name="v1"></param>
/// <returns></returns>
public static double AngleBetweenVectors(this IMathVector v0, IMathVector v1)
{
if (((double[])v0.ArrayData).Length == ((double[])v1.ArrayData).Length)
{
var sign = System.Math.Sign(((IMathVector)(v0.Cross(v1))).ArrayData.CastArray<double>()[2]);
var ret = System.Math.Acos(v0.Dot(v1) / (v0.GetLength() * v1.GetLength()));
return sign * ret;
}
throw new Exception("Vectors must have the same dimension!");
}
}