李淼《给孩子讲量子力学》读书笔记
1、决定论:“拉普拉斯妖”
拉普拉斯是牛顿力学的忠实信徒。他曾说过,我们可以把宇宙现在的状态视为其过去的果以及未来的因。如果一个智者能知道某一时刻所有的力和所有物体的运动状态,那么未来就会像过去一样出现在他的面前。这个拉普拉斯口中全知全能的智者,后来被人称为“拉普拉斯妖”。而这种认为牛顿力学强大到足以决定未来的观点,被称为决定论,在20世纪以前一直是学术界的主流观点。(如东野圭吾的《拉普拉斯的魔女》)
2、海森堡不确定性原理
但是海森堡发现,在微观世界里,拉普拉斯的前提本身就是错的。你根本无法同时测出物体的位置和动量。换句话说,如果你的“石子”只有原子那么小,你要想精确地测出它的位置,那它的动量就一定测不准;反过来,你要想精确地测出它的动量,那它的位置就一定测不准。总之就是鱼和熊掌不可兼得。而这个鱼和熊掌不可兼得的结果,就是量子力学中最重要的海森堡不确定性原理。
3、详述
为什么在微观世界里,物体的位置和动量没办法同时测准呢?这其实不难回答。想想,我们一般要怎样测量一个物体的位置?我们首先得看见它,对不对?所谓的“看见”,就是让光打到物体上面,然后再反射到人眼或显微镜里。我们前面讲过,每种光都有自己的波长。万一光的波长比物体的尺寸还长,那它就反射不回来了;换句话说,我们无法看见尺寸小于光的波长的物体。所以,要想精确地测出物体的位置,就要尽可能用波长比较短的光。但我们也讲过,光的波长越短,光子的能量就越大;而能量大的光子打到特别小的物体上,就会干扰到它原来的运动。打个比方,有一个皮球在地上滚,一只苍蝇撞上去,皮球还是照滚不误;但一只小狗扑上去,皮球的运动轨迹立刻就变了。同样的道理,能量越大的光子,也越容易干扰微观粒子的运动状态。这意味着,用波长短的光,就没办法测准物体的动量了。
所以你看,用波长比较长的光,能测准微观粒子的动量,却测不准它的位置;而用波长比较短的光,能测准微观粒子的位置,却测不准它的动量。鱼和熊掌不可兼得,说的就是这个道理。
4、量子力学的应用
1)第一个应用是激光。
激光和其他任何光一样,都是由光子组成的,也就是我们在第一讲中讲过的构成光的微粒。小朋友们应该还记得,每个光子都有一定的能量。一般生活里常见的光,比如太阳光,就包含着许许多多的光子,而且这些光子的能量有大有小。但激光非常特别,它里面每个光子的能量都一样大。这就是激光与普通光最大的区别。
2)第二个应用是半导体。
目前最小的芯片尺寸已经做到只有5纳米,也就是1米的二亿分之一。照这个速度发展下去,到2030年,晶体管就会变得只有一个原子那么大。到那个时候,我们在第一讲中讲过的不确定性原理就会起作用,直接干扰到这些晶体管的运行。也就是说,2030年以后,或许半导体芯片就会停止发展了。
3)第三个应用是量子传输
1982年,三位物理学家发现了一个重要的定理,叫作量子不可克隆定理。它说的是,在量子世界里,没有一个东西可以被完全地复制。换句话说,你没办法拷贝像一个电子、一个原子或一个分子那么小的东西。
其实量子传输已经在真实世界里实现了。1993年,六位物理学家想出了一个用量子纠缠来实现量子传输的办法。
2019年8月央视报道,我国科学家日前在国际上首次成功实现高维度量子体系的隐形传态,为发展高效量子网络奠定了坚实的科学基础。近日,国际权威学术期刊《物理评论快报》发表了这一最新研究成果,并称其是“量子通信领域的一个里程碑”。
中国科学院院士、中国科学技术大学教授潘建伟介绍,量子隐形传态,是一种全新的通信方式,类似于科幻电影中的星际穿越。 它能借助量子纠缠这一特性,将未知的量子态传输到遥远地点,而不用传送物质本身,是远距离量子通信和分布式量子计算的核心功能单元。