来源 中国发展高层论坛
提要:
2016 年 3 月,AlphaGo 计算机程序轻取围棋九段棋手李世石,立刻引发全世 界的讨论。这一里程碑事件向世界证明,机器可以像人类一样思考,甚至比人类做 得更好。乐观人士相信人工智能技术的突破将极大推动生产力的提高。但同时也激 发了对人工智能或将取代人类工作的焦虑情绪,甚至有人担心人类最终会创造出连 自己都无法控制的智能机器。在纷繁的观点背后,有一点毋庸置疑:人工智能有着 改变全球社会的巨大潜力。
随着人口红利的快速消失,中国急需寻找新的增长引擎。基于人工智能的自动化可以提升生产力,帮助中国实现其经济发展目标。
在这一背景下,理解人工智能的发展及其对中国的影响尤为重要。本文将涵盖以下内容:
第一部分简要介绍人工智能的发展历程、现有技术水平及未来展望。
第二部分分析中国在人工智能领域的实力并论述相关挑战,以及人工智能在
经济、社会和地缘政治方面的影响。
第三部分对中国在产业、经济、教育、社会及国际政策方面就人工智能发展 提出五大战略建议。
人工智能:拐点来临
人工智能是对人的意识、思维过程进行模拟的一门新学科。似乎在一夜之间人工智能从虚无缥缈的幻想成为了现实。计算机科学家们在机器学习和深度学习领域已取得重大突破,可以赋予机器认知及预测能力。如今在现实世界中,这些系统的应用已不鲜见。
回顾变革前的简史
人工智能意为机器对人脑思维认知功能的模拟。这一概念长期以来只存在于
人类幻想和科幻小说中,直至 20 世纪五六十年代,有关人工智能的理论初步形成 后,才开始引发普遍乐观情绪和第一波热潮。但由于技术未能实现突破性进展,人工智能无法达成预期效果,因此陷入了一段沉寂期 。往后数十年间虽然不乏成功案例(如 IBM 的超级计算机“深蓝”击败国际象棋冠军加里·卡斯帕罗夫),但因 为人工智能在现实世界的成功案例太过孤立,所以不足以支撑大规模商业化。
让我们快进至 21 世纪。数据收集及整理、算法(尤其是机器学习)以及高性 能计算等技术的突飞猛进促成了革命性进步。例如,在以往被认为是机器“无法 取胜”的围棋比赛中,AlphaGo 成功击败人类世界冠军,从而赋予了这场获胜历史 性的意义。
而变革不仅发生在理论前沿。被视为未来超级智能系统的先锋——各类应用 机器学习技术的分析工具已现身市场。金融、医疗、制造等行业应用发展迅速,人 工智能领域的全球风投也从 2012 年的 5.89 亿美元猛增至 2016 年的 50 多亿美元2。 麦肯锡预计,至 2025 年人工智能应用市场总值将达到 1270 亿美元。
了解人工智能及其能力
以往人们借助计算机的运算能力可以更高效地完成任务(例如,比人类更快地处理更复杂的计算)。传统的软件程序由人类编写,包含具体的指令要求。
人工智能的工作模式完全不同。它们依据通用的学习策略,可以读取海量的“大数据”,并从中发现规律、联系和洞见。因此人工智能能够根据新数据自动调整,而无需重设程序。利用机器学习 ,人工智能系统获得了归纳推理和决策能力;而深度学习 更将这一能力推向了更高的层次。这些计算机系统能够完全自主地学习、发现并应用规则。
虽然深度学习领域近来的突破可使人工智能系统在一些关键能力上媲美甚至赶超人类,但距离实现“通用人工智能”,即机器能够完全模拟人类认知活动,仍需数十年的努力。不过机器学习系统已经有了某些商业化落地,且应用广泛,可以担当客服、管理物流、监控工厂机械、优化能源使用以及分析医学资料。麦肯锡全球研究院最近的研究显示机器学习技术可广泛应用于各行各业 。
人工智能技术通常由四个部分组成,即认知、预测、决策和集成解决方案。
认知是指通过收集及解释信息来感知并描述世界,包括自然语言处理、计算机视觉和音频处理等技术。预测是指通过推理来预测行为和结果。举例而言,此类技术可用来制作针对特定顾客的定向广告。决策则主要关心如何做才能实现目标。这一领域的用例十分广泛,如路线规划、新药研发、动态定价等。最后,当人工智能与其他互补性技术(如机器人)结合时,可生成多种集成解决方案,如自动驾驶、机器人手术,以及能够对刺激做出响应的家用机器人等。目前人工智能各项技术的商业化水平参差不齐。认知和预测领域的许多技术已经逐步商业化,然而决策和集成解决方案技术多处在研发阶段(见图 1)。
人工智能的未来:挑战与机遇并存
过去的科技进步主要是指提升执行指定任务的能力。而当今的人工智能则是
赋予机器反应和适应能力以优化产出。通过与物联网、机器人等技术的结合,人工智能能够构造出一个整合的信息物理世界。
当今人工智能发展势头正猛,未来有望在全球多个行业和场景下得到广泛运
用,尤其是我们将会看到大量的人类工作被机器取代。麦肯锡全球研究院近期的一份报告对全球800多种职业所涵盖的2000多项工作内容进行分析后发现,全球约 50%的工作内容可以通过改进现有技术实现自动化。
当然,技术可行性只是影响自动化速度及程度的一个因素,还有其他因素需
要考虑,包括研发和应用成本、劳动力市场供需、经济效益,以及社会和政府监管部门的接受度。综合上述因素,麦肯锡全球研究院的这份自动化研究报告指出,在现今所有工作内容之中,过半会在2055年左右自动化,但这过程存在诸多变量。如果自动化推进速度快,达到该程度可能会提前20年;如果推进缓慢,则可能延后20年。
展望未来,人工智能可成为应对一些社会核心挑战的强大工具。在医疗领域,人工智能将极大提升我们分析人类基因组和为患者开发个性化治疗方案的能力,甚至大大加快治愈癌症、阿茲海默症和其他疾病的进程。在环保领域,人工智能能够分析气候特征并大规模降低能耗,帮助人类更好地监控和应对气候变化问题。人工智能甚至可以在地球以外地区发挥作用,他日或助力人类探索火星及外太空。
免费参加InnoTalk沙龙-InnoTalk-从人工智能在金融领域的应用创新看未来发展机会: