Pandas分组函数:groupby、pivot_table及crosstab

1. 起因

利用python的pandas库进行数据分组分析十分便捷,其中应用最多的方法包括:groupby、pivot_table及crosstab,以下分别进行介绍。

2. 详解

首先构造数据

import numpy as np
import pandas as pd
df = pd.DataFrame({'key1':['a','a','b','b','a'],'key2':['one','two','one','two','one'],'data1':np.random.randn(5),'data2':np.random.randn(5)}) 
df数据结构

2.1 group函数

分组groupby Pandas中最为常用和有效的分组函数。

1)按列分组

注意以下使用groupby()函数生成的group1是一个中间分组变量,为GroupBy类型。

group1 = df.groupby('key1')  
group2 = df.groupby(['key1','key2'])  

使用推导式[x for x in group1]可显示分组内容。

[x for x in group1]
[('a',       data1     data2 key1 key2
  0  1.830651  0.407903    a  one
  1 -0.973132 -0.056084    a  two
  4 -1.069184  0.043338    a  one), ('b',       data1     data2 key1 key2
  2 -0.477718 -1.488174    b  one
  3 -0.227680 -0.825671    b  two)]

在分组group1、group2上可以应用size()、sum()、count()等统计函数,能分别统计分组数量、不同列的分组和、不同列的分组数量。

group1.size()  
key1
a    3
b    2
dtype: int64
group1.sum() 

对于分组的某一列或者多个列,应用agg(func)可以对分组后的数据应用func函数。例如:用group1['data1'].agg('mean')对分组后的’data1’列求均值。当然也可以推广到同时作用于多个列和使用多个函数上。

group1['data1'].agg(['mean','sum'])  

2.2 透视表pivot_table

pivot_table可以产生类似于excel数据透视表的结果,相当的直观。其中参数index指定“行”键,columns指定“列”键。

pd.pivot_table(df, index = 'key1', columns= 'key2')

2.3 交叉表crosstab

交叉表crosstab 可以按照指定的行和列统计分组频数,用起来非常方便;当然同样的功能也可采用groupby实现。

pd.crosstab(df.key1,df.key2, margins=True)

3. 总结

最近在学习《利用Python进行数据分析》,会把遇到的问题和学习到的知识写出来,希望不要弃坑。

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 222,000评论 6 515
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 94,745评论 3 399
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 168,561评论 0 360
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 59,782评论 1 298
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 68,798评论 6 397
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 52,394评论 1 310
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,952评论 3 421
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 39,852评论 0 276
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 46,409评论 1 318
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 38,483评论 3 341
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 40,615评论 1 352
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 36,303评论 5 350
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,979评论 3 334
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 32,470评论 0 24
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 33,571评论 1 272
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 49,041评论 3 377
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 45,630评论 2 359

推荐阅读更多精彩内容