国际学习记录
2018.1.10
早上三、四节课。小学六年级课程――听赵龙老师讲解《圆柱、圆锥》
下午,1.初中课程――牛秀琴老师讲《因式分解》和张凡老师讲《平行线与相交线》2.小学二年级课程――王萌老师《20以内退位减法》
王校评课,以及提醒让每位老师注意的地方。总会收获满满,不断反思自己。
1.每次新授课前测非常重要,老师要对学生进行全面分析,了解孩子的前景观念和背景观念,同时老师要对每个知识的观念建构足够清晰。
2.小学阶段几何观念的建构观念,赵龙老师做的课程相当不错,不亏十年老教师。
《圆柱和圆锥》属于图形与几何模块。
核心:①严格落实通过几何变换(点线面)学习几何。②建构观念需要通过展开与折叠、旋转变换、切割变换、平移变换。
如何渗透:①通过操作,积累动作经验。②在命名圆柱和圆锥中的底面、侧面、表面、高、底面半径等要在几何变换中命名,不能在静态中命名。③在探索体积与表面积公式时要沟通它们的关系,充分体现公式的推理过程。体会几何变中有不变的性质。④在圆锥体积公式用到的是实验法,要给孩子留通道,让孩子暂时性接受它,鼓励孩子挑战,不给孩子设置天花板,要让孩子有惊异感,鼓励学生追求严格(严谨)的数学思想,让孩子总有极限思想,不要阻碍孩子的发展。
注意:建构观念不是通过训练达到,而是通过适当的训练让建构的观念更稳固更灵活。
顺序:在几何变换中学习几何――形式推理――适当训练(创造性地变成挑战)
3.重新理解前景观念和背景观念,前景观念是指对知识的清楚理解(知其所然)。
背景观念除了新学习的观念(或孩子无意识观念)即:不能解释知识背后的推理,也包括曾经学习的观念自动沉潜到内在的观念系统。
4.《平行,相交》在小学阶段只停留在物理性位置关系,孩子“无限”观念建立在视觉上,而不是建立在想像中,例如:两条铁轨平行,孩子只能理解无限是足够长而理解不了无限长。在初中才会过渡到欧氏几何阶段,顺序:判定定理――性质定理。前提:要有大量丰富的动作经验才能达到“直观自明”。通过前测明白孩子的真正认知冲突,从而有效的解决问题。
5.《20以内退位减法》,通过前测评估到课程开发到观念转变。在操作时同样是要让孩子积累大量的动作经验,并且沟通多种方法的联系,多种方法是有顺序的(从外到内):摆棋子,摆小棒――拨计数器――数轴上操作――抽象符号语言。
低段教学需注意:
①针对一年级只是当下认知发展水平相对较弱,并不存在好中差,而老师要做到是引导孩子帮助孩子协助孩子诞生观念。
②不要给孩子定性,要对孩子产生期待
③要引导孩子积极地思考和探索,让孩子分享自己探索的发现。而不是提前引导,真正让孩子思维流动起来,让孩子真的用大脑去思考,给孩子自由和思考的空间,并且引导孩子进入正确的思考方法。