sklearn进行数据预处理 — 归一化/标准化/正则化

本篇博客主要借鉴的是http://www.cnblogs.com/chaosimple/p/4153167.html
最近在学习sklearn,写算法基本上都会用到标准化, 数据标准化一共有三种,废话不多说,看具体的代码:

#encoding:utf-8
 
#sklearn数据标准化,数据标准化有三种
#第一种是Z-Score,或者去除均值和方差缩放
from  sklearn import preprocessing
import numpy as np
x = np.array([[1.,-1.,2.],
            [2.,0.,0.],
            [0.,1.,-1.]])
x_scaled = preprocessing.scale(x)
x_scaled.mean(axis=0)
x_scaled.std(axis=0)
# 使用sklearn.preprocessing.StandardScaler类,
# 使用该类的好处在于可以保存训练集中的参数(均值、方差)
# 直接使用其对象转换测试集数据。
scaler = preprocessing.StandardScaler().fit(x)
scaler.mean_
scaler.std_
scaler.transform(x)  #跟上面的结果是一样的
 
#第二种是将属性缩放到一个指定范围,也是就是(x-min)/(max-min)
#依赖于preprocessing中的MinMaxScaler类
x_train = np.array([[1.,-1.,2.],
            [2.,0.,0.],
            [0.,1.,-1.]])
 
min_max_scaler = preprocessing.MinMaxScaler()
x_train_minmax = min_max_scaler.fit_transform(x_train)
print(x_train_minmax)
# 当然,在构造类对象的时候也可以直接指定最大最小值的范围:feature_range = (min, max),此时应用的公式变为:
# x_std = (X-X.min(axis=0))/(X.max(axis=0)-X.min(axis=0))
# x_scaled = X_std/(max-min)+min
 
#第三种是正则化Normalization
 
x = np.array([[1.,-1.,2.],
            [2.,0.,0.],
            [0.,1.,-1.]])
x_normalized = preprocessing.normalize(x,norm='l2')
print(x_normalized)
 
# 可以使用processing.Normalizer()类实现对训练集和测试集的拟合和转换
normalizer = preprocessing.Normalizer().fit(x)
print(normalizer)
normalizer.transform(x)

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 215,463评论 6 497
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,868评论 3 391
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 161,213评论 0 351
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,666评论 1 290
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,759评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,725评论 1 294
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,716评论 3 415
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,484评论 0 270
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,928评论 1 307
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,233评论 2 331
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,393评论 1 345
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,073评论 5 340
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,718评论 3 324
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,308评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,538评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,338评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,260评论 2 352

推荐阅读更多精彩内容