2021-10-25 第一章 机器学习概述

机器学习:

依赖先验知识设计合理的学习结构,设计相应的学习算法,从经验数据中得到知识并对现有学习结构进行更新,使得既定的学习目标最优化;

流派:

符号学派:有限学习,仅对既有知识做排序或组合上的调整,较少引入全新的带有高风险的知识;

贝叶斯学派:引入概率工具描述事件的不确定性,将复杂事件之间的关系统一到概率框架中,将推理过程归结为后验概率,计算比较复杂;

连接学派:即神经网络学派,常用层次结构,训练方法一般采用反向传播算法,不确定性抵抗能力弱,易过拟合,可解释性差,但计算简单;

进化仿生学派:优胜劣汰,在不同结构和参数的模型中得到优秀模型,采用遗传算法。

基础:

权衡:数据量与模型复杂度、复杂度与效率、内存使用量与计算时间、表达能力与可扩展性等;

过拟合:

参数过拟合:模型训练过程中对参数调节过于细致,对训练数据过度学习;

结构过拟合:选择的模型过于复杂,以致对训练数据描述过于精细;

解决方法:1加入测试集检测性能,再加验证集选择模型;2加正则项;

TotalError = Bias+Variance+Noise(  预测误差 = Bias+Variance )

偏差(bias):模型本身的精度,即模型对数据的表达能力,即预测的期望和真实值之间的差距;

方差(variance):模型的泛化能力,即在不同数据集下训练模型的表现情况,即模型对训练数据的敏感度;

噪音(noise):观察数据本身带来的不确定性;

No Free Lunch 原则:如果某一个模型在某一条件、,某一数据环境下具有某种优势,则在其它条件、其它数据环境下必然具有相应的劣势;

Occam 剃刀准则:在保证模型表达能力的前提下尽量选择简单的模型;

学习方法分类

监督与非监督; 线性与非线性; 参数与非参数; 生成与区分性;概率与神经;

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 215,463评论 6 497
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,868评论 3 391
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 161,213评论 0 351
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,666评论 1 290
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,759评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,725评论 1 294
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,716评论 3 415
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,484评论 0 270
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,928评论 1 307
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,233评论 2 331
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,393评论 1 345
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,073评论 5 340
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,718评论 3 324
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,308评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,538评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,338评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,260评论 2 352

推荐阅读更多精彩内容