- 就是与
embed_tokens.weight
用同样的参数
if self.share_input_output_embed:
x = F.linear(x, self.embed_tokens.weight)
elif not self.share_input_output_embed:
self.embed_out = nn.Parameter(torch.Tensor(len(dictionary), output_embed_dim))
nn.init.normal_(self.embed_out, mean=0, std=output_embed_dim ** -0.5)
if self.share_input_output_embed:
x = F.linear(x, self.embed_tokens.weight)
else:
x = F.linear(x, self.embed_out)
def Embedding(num_embeddings, embedding_dim, padding_idx):
m = nn.Embedding(num_embeddings, embedding_dim, padding_idx=padding_idx)
nn.init.normal_(m.weight, mean=0, std=embedding_dim ** -0.5)
nn.init.constant_(m.weight[padding_idx], 0)
return m
最后编辑于 :
©著作权归作者所有,转载或内容合作请联系作者
平台声明:文章内容(如有图片或视频亦包括在内)由作者上传并发布,文章内容仅代表作者本人观点,简书系信息发布平台,仅提供信息存储服务。