机器学习一级目录阅读

  1. 绪论
  2. 模型评估与选择
  3. 线性模型
    用一个线性数学公式表示输入和输出的关系
  4. 决策树
    if-else
  5. 神经网络
    当有大量的样本和每个样本的一个变量就是神经元的触角,这些触角的作用可以反馈到神经的反应,这个反应就是结果。无数个神经元就形成了神经网络。
  6. 支持向量机
    试图找到一个可以将真假的分界线,划分两个领域,在分界线左边或者右边就是真和假
  7. 贝叶斯分类器
    用概率论的方式进行预测结果,每一个样本的一个条件对结果的影响概率,多个条件和概率的综合可以反应整体结果概况,对于测试样本只需要对结果做运算
  8. 集成学习
    运用多种分类器进行样本预测
  9. 聚类
    无监督学习,有机器自由分类
  10. 降维与度量学习
    在概率高的地方着重选取样本或条件,重点突出,代表投票选出结果
  11. 特征选择与稀疏学习
    选择样本特征,主要对结果有影响的特征,重点学习
  12. 计算--学习理论
    对学习理论的一种计算,提供学习算法的理论支持
  13. 半监督学习
    基于监督和非监督之间的方式
  14. 概率图模型
    并不是图片的图,而是一种数据结构,图,将概率制作成图
  15. 规则学习
    实战部分 人工给定规则给学习算法,
    16.强化学习
    对于任务的预测成功,则给予算法一定的奖励

理解方法:机器学习,就是做预测,单个预测,或多个预测,预测之前给定一定规模的样本数目,作为参照物,测试样本则是用来检验算法的成败或概率的。
有以上一些算法理论,和操作的方法论。

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 220,884评论 6 513
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 94,212评论 3 395
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 167,351评论 0 360
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 59,412评论 1 294
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 68,438评论 6 397
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 52,127评论 1 308
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,714评论 3 420
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 39,636评论 0 276
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 46,173评论 1 319
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 38,264评论 3 339
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 40,402评论 1 352
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 36,073评论 5 347
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,763评论 3 332
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 32,253评论 0 23
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 33,382评论 1 271
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 48,749评论 3 375
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 45,403评论 2 358

推荐阅读更多精彩内容