Python实战计划学习第三周

绘制各类目对比柱状图

import pymongo
import charts
client = pymongo.MongoClient('localhost',27017)
local = client['local']
_58_infos = local['log_y']


def data_gen(type):
    stats = {}
    for info in _58_infos.find():
        area = info['cates'][2]
        stats[area] = 1 if area not in stats else stats[area] + 1
    for k, v in stats.items():
        yield {
            'name': k
            , 'data': [v]
            , 'type': type
        }
series = [i for i in data_gen('column')]
charts.plot(series,show='inline',options=dict(title=dict(text='发帖量')))
屏幕快照 2016-06-02 下午9.09.28.png
  • 学习了yield语法,确实很好用

绘制发帖量折线图

import pymongo
import charts
from datetime import timedelta, date
import time
client = pymongo.MongoClient('localhost',27017)
local = client['local']
_58_infos = local['log_y']

for i in _58_infos.find().limit(10):
    print(i['cates'][2])

def gen_days(date1, date2):
    time1 = time.strptime(date1, '%Y.%m.%d')
    time2 = time.strptime(date2, '%Y.%m.%d')
    date1 = date(time1[0], time1[1], time1[2])
    date2 = date(time2[0], time2[1], time2[2])
    days = timedelta(days=1)
    while date1 <= date2:
        yield (date1.strftime('%Y.%m.%d'))
        date1 = date1 + days

def data_gen(date1, date2, cates, type='line'):
    days = [i for i in gen_days(date1, date2)]
    stats = {}
    for i in cates:
        stats[i] = [0 for i in days]
    for info in _58_infos.find({'pub_date':{'$gte':days[0],'$lte':days[-1]},'cates':{'$in':cates}}):
        cate = info['cates'][2]
        pub_date = info['pub_date']
        stats[cate][days.index(pub_date)] +=1
    for k, v in stats.items():
        yield {
            'name': k
            , 'data': v
            , 'type': type
        }
print([i for i in data_gen('2015.12.24','2016.01.05',['朝阳'])])

options = {
    'chart': {'zoomType': 'xy'}
    , 'title': {'text': '发帖量统计'}
    , 'subtitle': {'text': '可视化统计图表'}
    , 'xAxis': {'categories': [i for i in gen_days('2015.12.24' , '2016.01.05') ]}
    , 'yAxis': {'title': {'text': '数量'}}
}
series = [data for data in data_gen('2015.12.24' , '2016.01.05', ['北京二手家电', '北京二手台式机/配件', '北京二手笔记本'])]
charts.plot(series, show='inline', options=options)
屏幕快照 2016-06-02 下午9.16.00.png
  • 学习了datetime库的一些知识。
  • 使用pymongo.find方法过滤自己需要的数据。

绘制热销商品的分布饼图

import pymongo
import charts

client = pymongo.MongoClient('localhost', 27017)
local = client['local']
_58_infos = local['log_y']


def data_gen_1(date, time):
    pipeline = [
        {'$match': {'$and': [{'pub_date': date}, {'time': time}]}}
        , {'$group': {'_id': {'$slice': ['$area', 1]}, 'counts': {'$sum': 1}}}
        , {'$sort': {'counts': -1}}
        , {'$limit': 100}
    ]
    for i in _58_infos.aggregate(pipeline):
        yield [i['_id'][0], i['counts']]
def data_gen_2(date, time):
    pipeline = [
        {'$match': {'$and': [{'pub_date': date}, {'time': time}]}}
        , {'$group': {'_id': {'$slice': ['$area', 1]}, 'counts': {'$sum': '$price'}}}
        , {'$sort': {'counts': -1}}
        , {'$limit': 100}
    ]
    for i in _58_infos.aggregate(pipeline):
        yield [i['_id'][0], i['counts']]

options = {
    'chart': {'zoomType': 'xy'}
    , 'title': {'text': '发帖量统计'}
    , 'subtitle': {'text': '2016.01.10二手物品在随后7天内,交易时长为1天的类目分布占比'}
}
series = [{
    'type': 'pie'
    , 'name': '交易数'
    , 'data': [i for i in data_gen_1('2016.01.10', 1)]
}]
print(series)
charts.plot(series, options=options, show='inline')

屏幕快照 2016-06-02 下午9.18.57.png
屏幕快照 2016-06-02 下午9.22.12.png
  • 学习mongo的高级特性pieline方式处理数据,加快数据处理速度

分析二手商品行情

import pymongo
import charts

client = pymongo.MongoClient('localhost', 27017)
local = client['local']
_58_infos = local['log_y']


def data_gen(area):
    pipeline = [
        {'$match': {'area': {'$in': [area]}}}
        , {'$group': {'_id': {'$slice': ['$cates', 2, 1]}, 'counts': {'$sum': 1}}}
        , {'$sort': {'counts': -1}}
        , {'$limit': 3}
    ]
    data = [0 for i in range(3)]
    for i in _58_infos.aggregate(pipeline):
        yield {
            'name': i['_id'][0]
            , 'data': i['counts']
        }


def area_gen():
    pipeline = [
        {'$group': {'_id': {'$slice': ['$area', 1]}, 'counts': {'$sum': 1}}}
        , {'$sort': {'counts': -1}}
    ]
    for i in _58_infos.aggregate(pipeline):
        yield {
            'name': i['_id'][0]
            , 'data': i['counts']
        }

area = '朝阳'
data = [i for i in data_gen(area)]
series = [{
    'name': '发帖量'
    , 'data': [i['data'] for i in data]
    , 'type': 'column'
}]
options = {
    'chart': {'type': 'column'}
    , 'title': {'text': '{}发帖最多的Top3类目'.format(area)}
    , 'subtitle': {'text': '可视化统计图表'}
    , 'xAxis': {'categories': [i['name'] for i in data]}
    , 'yAxis': {'title': {'text': '发帖量'}}
}
print('{} -> {}'.format(series, options))
charts.plot(series, show='inline', options=options)
屏幕快照 2016-06-02 下午9.23.50.png
import pymongo
import charts

client = pymongo.MongoClient('localhost', 27017)
walden = client['walden']
_ganji_infos = walden['log_y']

for i in _ganji_infos.find().limit(10):
    if i['price'] :
        i['price'] = int(i['price'])
    else:
        i['price'] = -1
    _ganji_infos.update_one({'_id':i['_id']},{'$set':{'price':i['price']}})
for i in _ganji_infos.find().limit(10):
    print('{} {} {}'.format(i['cate'][3],i['newer'],i['price']))

def data_gen(cate):
    pipeline = [
        {'$match': {'$and': [{'cate': {'$in':[cate]}}, {'price': {'$gt': 0}}]}}
        , {'$group': {'_id': '$newer', 'counts': {'$avg': '$price'}}}
        , {'$sort': {'counts': -1}}
    ]
    for i in _ganji_infos.aggregate(pipeline):
        print(i)
        yield {
            'name': i['_id']
            , 'data': i['counts']
        }


def cate_gen():
    pipeline = [
        {'$match': {'price': {'$gt': 0}}}
        , {'$group': {'_id': {'$slice': ['$cate', 2, 1]}, 'counts': {'$avg': '$price'}}}
        , {'$sort': {'counts': -1}}
    ]
    for i in _ganji_infos.aggregate(pipeline):
        yield {
            'name': i['_id'][0]
            , 'data': i['counts']
        }


print([i for i in cate_gen()])

cate = '北京二手家具'
data = [i for i in data_gen(cate)]
print(data)
series = [{
    'name': '平均价格'
    , 'data': [i['data'] for i in data]
}]
options = {
    'chart': {'zoomType': 'xy'}
    , 'title': {'text': '{}成色对应的平均价格'.format(cate)}
    , 'subtitle': {'text': '可视化统计图表'}
    , 'xAxis': {'categories': [i['name'] for i in data]}
    , 'yAxis': {'title': {'text': '平均价格'}}
}
print('{} -> {}'.format(series, options))

charts.plot(series, show='inline', options=options)

屏幕快照 2016-06-02 下午9.24.38.png
  • 主要用来调试pieline的结构,一定要小心处理
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 204,189评论 6 478
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,577评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 150,857评论 0 337
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,703评论 1 276
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,705评论 5 366
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,620评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,995评论 3 396
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,656评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,898评论 1 298
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,639评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,720评论 1 330
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,395评论 4 319
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,982评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,953评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,195评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 44,907评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,472评论 2 342

推荐阅读更多精彩内容