Java AtomicInteger的用法

1、java.util.concurrent.atomic 的包里有AtomicBoolean, AtomicInteger,AtomicLong,AtomicLongArray,
AtomicReference等原子类的类,主要用于在高并发环境下的高效程序处理,来帮助我们简化同步处理.

在Java语言中,++i和i++操作并不是线程安全的,在使用的时候,不可避免的会用到synchronized关键字。而AtomicInteger则通过一种线程安全的加减操作接口。

2、AtomicInteger的基本方法

  • 创建一个AtomicInteger
  System.out.println(atomicInteger.get());


--->输出 : 123
  • 创建一个不传值的,默认值为0
  AtomicInteger atomicInteger = new AtomicInteger();
  System.out.println(atomicInteger.get());
---->输出: 0
  • 获取和赋值
atomicInteger.get(); //获取当前值
atomicInteger.set(999); //设置当前值

atomicInteger.compareAndSet(expectedValue,newValue)

 public static void main(String[] args) {
        AtomicInteger atomicInteger = new AtomicInteger(0);
        System.out.println(atomicInteger.get());

        int expectedValue = 123;
        int newValue      = 234;
        Boolean b =atomicInteger.compareAndSet(expectedValue, newValue);
        System.out.println(b);
        System.out.println(atomicInteger);

    }

----》输出结果为: 0 false 0


 public static void main(String[] args) {
        AtomicInteger atomicInteger = new AtomicInteger(123);
        System.out.println(atomicInteger.get());

        int expectedValue = 123;
        int newValue      = 234;
        Boolean b =atomicInteger.compareAndSet(expectedValue, newValue);
        System.out.println(b);
        System.out.println(atomicInteger);

    }

-----》输出结果为: 123 true  234

由上可知该方法表示,atomicInteger的值与expectedValue相比较,如果不相等,则返回false,
atomicInteger原有值保持不变;如果两者相等,则返回true,atomicInteger的值更新为newValue

  • getAndAdd()方法与AddAndGet方法
       AtomicInteger atomicInteger = new AtomicInteger(123);
        System.out.println(atomicInteger.get());  --123

        System.out.println(atomicInteger.getAndAdd(10)); --123 获取当前值,并加10
        System.out.println(atomicInteger.get()); --133


        System.out.println(atomicInteger.addAndGet(10)); --143 获取加10后的值,先加10
        System.out.println(atomicInteger.get()); --143
  • getAndDecrement()和DecrementAndGet()方法
        AtomicInteger atomicInteger = new AtomicInteger(123);
        System.out.println(atomicInteger.get());   --123

        System.out.println(atomicInteger.getAndDecrement()); --123 获取当前值并自减
        System.out.println(atomicInteger.get());  --122


        System.out.println(atomicInteger.decrementAndGet()); --121 先自减再获取减1后的值
        System.out.println(atomicInteger.get()); --121

3、使用AtomicInteger,即使不用同步块synchronized,最后的结果也是100,可用看出AtomicInteger的作用,用原子方式更新的int值。主要用于在高并发环境下的高效程序处理。使用非阻塞算法来实现并发控制。

public class Counter {

    public static AtomicInteger count = new AtomicInteger(0);

    public static void inc(){
        try{
            Thread.sleep(1); //延迟1毫秒

        }catch (InterruptedException e){ //catch住中断异常,防止程序中断
            e.printStackTrace();

        }
        count.getAndIncrement();//count值自加1
    }


    public static void main(String[] args) throws InterruptedException {


        final CountDownLatch latch = new CountDownLatch(100);

        for(int i=0;i<100;i++){
            new Thread(new Runnable() {
                @Override
                public void run() {
                    Counter.inc();
                    latch.countDown();
                }
            }).start();
        }
        latch.await();

        System.out.println("运行结果:"+Counter.count);


    }
}

运行结果: 100

4、使用普通Integer

public class Counter {

    public volatile  static int count = 0;

    public static void inc(){
        try{
            Thread.sleep(1); //延迟1毫秒

        }catch (InterruptedException e){ //catch住中断异常,防止程序中断
            e.printStackTrace();

        }
        count++;//count值自加1
    }


    public static void main(String[] args) throws InterruptedException {


        final CountDownLatch latch = new CountDownLatch(100);

        for(int i=0;i<100;i++){
            new Thread(new Runnable() {
                @Override
                public void run() {
                    Counter.inc();
                    latch.countDown();
                }
            }).start();
        }
        latch.await();

        System.out.println("运行结果:"+Counter.count);
   }
}
运行结果:98

5、如果在inc方法前面加个synchronized也能是线程安全的;

它用来修饰一个方法或者一个代码块的时候,能够保证在同一时刻最多只有一个线程执行该段代码。

import java.util.concurrent.CountDownLatch;

/**
 * created by guanguan  on 2017/10/23
 **/
public class Counter {

     public volatile static  Integer count = 0;

    public synchronized static void inc(){
        try{
            Thread.sleep(1); //延迟1毫秒

        }catch (InterruptedException e){ //catch住中断异常,防止程序中断
            e.printStackTrace();

        }
          count++;//count值自加1
    }


    public static void main(String[] args) throws InterruptedException {


        final CountDownLatch latch = new CountDownLatch(100);

        for(int i=0;i<100;i++){
            new Thread(new Runnable() {
                @Override
                public void run() {
                    Counter.inc();
                    latch.countDown();
                }
            }).start();
        }
        latch.await();

        System.out.println("运行结果:"+Counter.count);


    }
}

运行结果:100

synchronized的使用说明:

一、当两个并发线程访问同一个对象object中的这个synchronized(this)同步代码块时,一个时间内只能有一个线程得到执行。另一个线程必须等待当前线程执行完这个代码块以后才能执行该代码块。

二、然而,当一个线程访问object的一个synchronized(this)同步代码块时,另一个线程仍然可以访问该object中的非synchronized(this)同步代码块。

三、尤其关键的是,当一个线程访问object的一个synchronized(this)同步代码块时,其他线程对object中所有其它synchronized(this)同步代码块的访问将被阻塞。

四、第三个例子同样适用其它同步代码块。也就是说,当一个线程访问object的一个synchronized(this)同步代码块时,它就获得了这个object的对象锁。结果,其它线程对该object对象所有同步代码部分的访问都被暂时阻塞。

五、以上规则对其它对象锁同样适用.

6、从上面的例子中我们可以看出:使用AtomicInteger是非常的安全的.而且因为AtomicInteger由硬件提供原子操作指令实现的。在非激烈竞争的情况下,开销更小,速度更快。

java的关键域有3个

// setup to use Unsafe.compareAndSwapInt for updates  
private static final Unsafe unsafe = Unsafe.getUnsafe();  
private static final long valueOffset;  
private volatile int value; 

这里, unsafe是java提供的获得对对象内存地址访问的类,注释已经清楚的写出了,它的作用就是在更新操作时提供“比较并替换”的作用。实际上就是AtomicInteger中的一个工具。

valueOffset是用来记录value本身在内存的便宜地址的,这个记录,也主要是为了在更新操作在内存中找到value的位置,方便比较。

注意:value是用来存储整数的时间变量,这里被声明为volatile,就是为了保证在更新操作时,当前线程可以拿到value最新的值(并发环境下,value可能已经被其他线程更新了)。

这里,我们以自增的代码为例,可以看到这个并发控制的核心算法:

源码

 public final int updateAndGet(IntUnaryOperator updateFunction) {
        int prev, next;
        do {
            prev = get();
            next = updateFunction.applyAsInt(prev);
        } while (!compareAndSet(prev, next));
        return next;
    }
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 212,080评论 6 493
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,422评论 3 385
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 157,630评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,554评论 1 284
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,662评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,856评论 1 290
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,014评论 3 408
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,752评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,212评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,541评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,687评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,347评论 4 331
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,973评论 3 315
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,777评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,006评论 1 266
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,406评论 2 360
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,576评论 2 349

推荐阅读更多精彩内容