数据类型
变量不会声明为某种数据类型。 变量分配有R对象,R对象的数据类型变为变量的数据类型
常用R对象类型
矢量
列表
矩阵
数组
因子
数据帧
这些对象中最简单的是向量对象,并且这些原子向量有六种数据类型,也称为六类向量。 其他R对象建立在原子向量之上。
数据类型 例 校验
Logical(逻辑型) TRUE, FALSE v <- TRUE
print(class(v))
它产生以下结果 -
[1] "logical"
Numeric(数字) 12.3,5,999 v <- 23.5
print(class(v))
它产生以下结果 -
[1] "numeric"
Integer(整型) 2L,34L,0L v <- 2L
print(class(v))
它产生以下结果 -
[1] "integer"
Complex(复合型) 3 + 2i v <- 2+5i
print(class(v))
它产生以下结果 -
[1] "complex"
Character(字符) 'a' , '"good", v <- "TRUE"
"TRUE", '23.4' print(class(v))
它产生以下结果 -
[1] "character"
Raw(原型) "Hello" 被存储为 v <- charToRaw("Hello")
48 65 6c 6c 6f print(class(v))
它产生以下结果 -
[1] "raw"
在R编程中,非常基本的数据类型是称为向量的R对象,其保存如上所示的不同类的元素。 请注意,在R中,类的数量不仅限于上述六种类型。 例如,我们可以使用许多原子向量并创建一个数组,其类将成为数组。
Vectors 向量
当你想用多个元素创建向量时,你应该使用c()函数,这意味着将元素组合成一个向量。
Create a vector.
apple <- c('red','green',"yellow")
print(apple)
Get the class of the vector.
print(class(apple))
当我们执行上面的代码,它产生以下结果
[1] "red" "green" "yellow"
[1] "character"
Lists 列表
列表是一个R对象,它可以在其中包含许多不同类型的元素,如向量,函数甚至其中的另一个列表。
Create a list.
list1 <- list(c(2,5,3),21.3,sin)
Print the list.
print(list1)
当我们执行上面的代码,它产生以下结果
[[1]]
[1] 2 5 3
[[2]]
[1] 21.3
[[3]]
function (x) .Primitive("sin")
Matrices 矩阵
矩阵是二维矩形数据集。 它可以使用矩阵函数的向量输入创建。
Create a matrix.
M = matrix( c('a','a','b','c','b','a'), nrow = 2, ncol = 3, byrow = TRUE)
print(M)
当我们执行上面的代码,它产生以下结果
[,1] [,2] [,3]
[1,] "a" "a" "b"
[2,] "c" "b" "a"
Arrays 数组
虽然矩阵被限制为二维,但阵列可以具有任何数量的维度。 数组函数使用一个dim属性创建所需的维数。 在下面的例子中,我们创建了一个包含两个元素的数组,每个元素为3x3个矩阵。
Create an array.
a <- array(c('green','yellow'),dim = c(3,3,2))
print(a)
当我们执行上面的代码,它产生以下结果
, , 1
[,1] [,2] [,3]
[1,] "green" "yellow" "green"
[2,] "yellow" "green" "yellow"
[3,] "green" "yellow" "green"
, , 2
[,1] [,2] [,3]
[1,] "yellow" "green" "yellow"
[2,] "green" "yellow" "green"
[3,] "yellow" "green" "yellow"
Factors 因子
因子是使用向量创建的r对象。 它将向量与向量中元素的不同值一起存储为标签。 标签总是字符,不管它在输入向量中是数字还是字符或布尔等。 它们在统计建模中非常有用。
使用factor()函数创建因子。nlevels函数给出级别计数。
Create a vector.
apple_colors <- c('green','green','yellow','red','red','red','green')
Create a factor object.
factor_apple <- factor(apple_colors)
Print the factor.
print(factor_apple)
print(nlevels(factor_apple))
当我们执行上面的代码,它产生以下结果
[1] green green yellow red red red yellow green
Levels: green red yellow
applying the nlevels function we can know the number of distinct values
[1] 3
Data Frames 数据帧
数据帧是表格数据对象。 与数据帧中的矩阵不同,每列可以包含不同的数据模式。 第一列可以是数字,而第二列可以是字符,第三列可以是逻辑的。 它是等长度的向量的列表。
使用data.frame()函数创建数据帧。
Create the data frame.
BMI <- data.frame(
gender = c("Male", "Male","Female"),
height = c(152, 171.5, 165),
weight = c(81,93, 78),
Age = c(42,38,26)
)
print(BMI)
当我们执行上面的代码,它产生以下结果
gender height weight Age
1 Male 152.0 81 42
2 Male 171.5 93 38
3 Female 165.0 78 26