Pytorch深度学习-用ResNet18训练CIFAR10数据集

CIFAR10数据集来源:torchvision.datasets.CIFAR10()

CIFAR10数据集是一个用于识别普适物体的小型数据集,一共包含10个类别的RGB彩色图片,图片尺寸大小为32x32,如图:

CIFAR10.png

相较于MNIST数据集,MNIST数据集是28x28的单通道灰度图,而CIFAR10数据集是32x32的RGB三通道彩色图,CIFAR10数据集更接近于真实世界的图片。

全连接的缺点有:

  1. 全连接参数过多,会导致训练量过大

  2. 全连接把图像展开成一个向量,丢失了图像原本的位置信息

  3. 全连接限制图像的尺寸,而卷积则不关心图像尺寸大小,只需要接受输入的通道数,输出的通道数和卷积核大小即可确定图像尺寸的变换过程,即

H_{out} = {H_{in}+2*padding-kernalsize\over stride}+1.
W_{out} = {W_{in}+2*padding-kernalsize\over stride}+1.
padding:对输入图片进行填充,一般用0填充,padding=1,代表填充一圈,保证卷积前后的图像尺寸大小一致,padding计算公式如下:
padding = {kernalsize-1\over 2}.

stride步长:指的是卷积核每次滑动的距离大小

ResNet网络模型:

ResNet.png

本文采用ResNet18来构建深度网络模型:

ResNet18.png

1. 数据集构建

每个像素点即每条数据中的值范围为0-255,有的数字过大不利于训练且难以收敛,故将其归一化到(0-1)之间

# 数据集处理

# transforms.RandomHorizontalFlip(p=0.5)---以0.5的概率对图片做水平横向翻转
transform_train = transforms.Compose([transforms.RandomHorizontalFlip(p=0.5),
                                      transforms.ToTensor(),
                                      transforms.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225))])

# transforms.ToTensor()---shape从(H,W,C)->(C,H,W), 每个像素点从(0-255)映射到(0-1):直接除以255
# transforms.Normalize---先将输入归一化到(0,1),像素点通过"(x-mean)/std",将每个元素分布到(-1,1)
transform = transforms.Compose([transforms.ToTensor(),
                                transforms.Normalize(std=(0.485, 0.456, 0.406), mean=(0.226, 0.224, 0.225))])

train_dataset = datasets.CIFAR10(root="../DataSet/cifar10", train=True, transform=transform_train,
                                 download=True)
test_dataset = datasets.CIFAR10(root="../DataSet/cifar10", train=False, transform=transform,
                                download=True)
# dataset:数据集 batch_size:mini-batch的大小 shuffle:是否打乱数据集顺序
train_loader = DataLoader(train_dataset, batch_size=64, shuffle=True)
test_loader = DataLoader(test_dataset, batch_size=64, shuffle=False)


2.构建 VGGNet18 网络模型,最后接Softmax来处理output

1)ResNet18_BasicBlock-残差单元

# 构建 VGGNet18 网络模型

# 1.ResNet18_BasicBlock-残差单元
class ResNet18_BasicBlock(nn.Module):
    def __init__(self, input_channel, output_channel, stride, use_conv1_1):
        super(ResNet18_BasicBlock, self).__init__()

        # 第一层卷积
        self.conv1 = nn.Conv2d(input_channel, output_channel, kernel_size=3, stride=stride, padding=1)
        # 第二层卷积
        self.conv2 = nn.Conv2d(output_channel, output_channel, kernel_size=3, stride=1, padding=1)

        # 1*1卷积核,在不改变图片尺寸的情况下给通道升维
        self.extra = nn.Sequential(
            nn.Conv2d(input_channel, output_channel, kernel_size=1, stride=stride, padding=0),
            nn.BatchNorm2d(output_channel)
        )

        self.use_conv1_1 = use_conv1_1

        self.bn = nn.BatchNorm2d(output_channel)
        self.relu = nn.ReLU(inplace=True)

    def forward(self, x):
        out = self.bn(self.conv1(x))
        out = self.relu(out)

        out = self.bn(self.conv2(out))

        # 残差连接-(B,C,H,W)维度一致才能进行残差连接
        if self.use_conv1_1:
            out = self.extra(x) + out

        out = self.relu(out)
        return out

2)构建 ResNet18 网络模型

# 2.构建 ResNet18 网络模型
class ResNet18(nn.Module):
    def __init__(self):
        super(ResNet18, self).__init__()

        self.conv1 = nn.Sequential(
            nn.Conv2d(3, 64, kernel_size=3, stride=3, padding=1),
            nn.BatchNorm2d(64)
        )
        self.block1_1 = ResNet18_BasicBlock(input_channel=64, output_channel=64, stride=1, use_conv1_1=False)
        self.block1_2 = ResNet18_BasicBlock(input_channel=64, output_channel=64, stride=1, use_conv1_1=False)

        self.block2_1 = ResNet18_BasicBlock(input_channel=64, output_channel=128, stride=2, use_conv1_1=True)
        self.block2_2 = ResNet18_BasicBlock(input_channel=128, output_channel=128, stride=1, use_conv1_1=False)

        self.block3_1 = ResNet18_BasicBlock(input_channel=128, output_channel=256, stride=2, use_conv1_1=True)
        self.block3_2 = ResNet18_BasicBlock(input_channel=256, output_channel=256, stride=1, use_conv1_1=False)

        self.block4_1 = ResNet18_BasicBlock(input_channel=256, output_channel=512, stride=2, use_conv1_1=True)
        self.block4_2 = ResNet18_BasicBlock(input_channel=512, output_channel=512, stride=1, use_conv1_1=False)

        self.FC_layer = nn.Linear(512 * 1 * 1, 10)

        self.adaptive_avg_pool2d = nn.AdaptiveAvgPool2d((1,1))
        self.relu = nn.ReLU(inplace=True)

    def forward(self, x):

        x = self.relu(self.conv1(x))

        # ResNet18-网络模型
        x = self.block1_1(x)
        x = self.block1_2(x)

        x = self.block2_1(x)
        x = self.block2_2(x)

        x = self.block3_1(x)
        x = self.block3_2(x)

        x = self.block4_1(x)
        x = self.block4_2(x)
        
        # 平均值池化
        x = self.adaptive_avg_pool2d(x)
        
        # 数据平坦化处理,为接下来的全连接层做准备
        x = x.view(x.size(0), -1)
        x = self.FC_layer(x)

        return x

3. 构建损失函数和优化器

损失函数采用CrossEntropyLoss
优化器采用 SGD 随机梯度优化算法

# 构造损失函数和优化器
criterion = nn.CrossEntropyLoss()
opt = optim.SGD(model.parameters(), lr=0.01, momentum=0.8, weight_decay=0.001)

# 动态更新学习率------每隔step_size : lr = lr * gamma
schedule = optim.lr_scheduler.StepLR(opt, step_size=10, gamma=0.6, last_epoch=-1)

4.完整代码

# -*- codeing = utf-8 -*-
# @Software : PyCharm

import torch
from torch import nn, optim
from torch.utils.data import DataLoader
from torchvision import datasets, transforms
from matplotlib import pyplot as plt
import time

device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")

# transforms.RandomHorizontalFlip(p=0.5)---以0.5的概率对图片做水平横向翻转
transform_train = transforms.Compose([transforms.RandomHorizontalFlip(p=0.5),
                                      transforms.ToTensor(),
                                      transforms.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225))])

# transforms.ToTensor()---shape从(H,W,C)->(C,H,W), 每个像素点从(0-255)映射到(0-1):直接除以255
# transforms.Normalize---先将输入归一化到(0,1),像素点通过"(x-mean)/std",将每个元素分布到(-1,1)
transform = transforms.Compose([transforms.ToTensor(),
                                transforms.Normalize(std=(0.485, 0.456, 0.406), mean=(0.226, 0.224, 0.225))])

train_dataset = datasets.CIFAR10(root="../DataSet/cifar10", train=True, transform=transform_train,
                                 download=True)
test_dataset = datasets.CIFAR10(root="../DataSet/cifar10", train=False, transform=transform,
                                download=True)

train_loader = DataLoader(train_dataset, batch_size=64, shuffle=True)
test_loader = DataLoader(test_dataset, batch_size=64, shuffle=False)

# ResNet18_BasicBlock-残差单元
class ResNet18_BasicBlock(nn.Module):
    def __init__(self, input_channel, output_channel, stride, use_conv1_1):
        super(ResNet18_BasicBlock, self).__init__()

        # 第一层卷积
        self.conv1 = nn.Conv2d(input_channel, output_channel, kernel_size=3, stride=stride, padding=1)
        # 第二层卷积
        self.conv2 = nn.Conv2d(output_channel, output_channel, kernel_size=3, stride=1, padding=1)

        # 1*1卷积核,在不改变图片尺寸的情况下给通道升维
        self.extra = nn.Sequential(
            nn.Conv2d(input_channel, output_channel, kernel_size=1, stride=stride, padding=0),
            nn.BatchNorm2d(output_channel)
        )

        self.use_conv1_1 = use_conv1_1

        self.bn = nn.BatchNorm2d(output_channel)
        self.relu = nn.ReLU(inplace=True)

    def forward(self, x):
        out = self.bn(self.conv1(x))
        out = self.relu(out)

        out = self.bn(self.conv2(out))

        # 残差连接-(B,C,H,W)维度一致才能进行残差连接
        if self.use_conv1_1:
            out = self.extra(x) + out

        out = self.relu(out)
        return out


# 构建 ResNet18 网络模型
class ResNet18(nn.Module):
    def __init__(self):
        super(ResNet18, self).__init__()

        self.conv1 = nn.Sequential(
            nn.Conv2d(3, 64, kernel_size=3, stride=3, padding=1),
            nn.BatchNorm2d(64)
        )
        self.block1_1 = ResNet18_BasicBlock(input_channel=64, output_channel=64, stride=1, use_conv1_1=False)
        self.block1_2 = ResNet18_BasicBlock(input_channel=64, output_channel=64, stride=1, use_conv1_1=False)

        self.block2_1 = ResNet18_BasicBlock(input_channel=64, output_channel=128, stride=2, use_conv1_1=True)
        self.block2_2 = ResNet18_BasicBlock(input_channel=128, output_channel=128, stride=1, use_conv1_1=False)

        self.block3_1 = ResNet18_BasicBlock(input_channel=128, output_channel=256, stride=2, use_conv1_1=True)
        self.block3_2 = ResNet18_BasicBlock(input_channel=256, output_channel=256, stride=1, use_conv1_1=False)

        self.block4_1 = ResNet18_BasicBlock(input_channel=256, output_channel=512, stride=2, use_conv1_1=True)
        self.block4_2 = ResNet18_BasicBlock(input_channel=512, output_channel=512, stride=1, use_conv1_1=False)

        self.FC_layer = nn.Linear(512 * 1 * 1, 10)

        self.adaptive_avg_pool2d = nn.AdaptiveAvgPool2d((1,1))
        self.relu = nn.ReLU(inplace=True)

    def forward(self, x):

        x = self.relu(self.conv1(x))

        # ResNet18-网络模型
        x = self.block1_1(x)
        x = self.block1_2(x)
        x = self.block2_1(x)
        x = self.block2_2(x)
        x = self.block3_1(x)
        x = self.block3_2(x)
        x = self.block4_1(x)
        x = self.block4_2(x)
        
        # 平均值池化
        x = self.adaptive_avg_pool2d(x)
        
        # 数据平坦化处理,为接下来的全连接层做准备
        x = x.view(x.size(0), -1)
        x = self.FC_layer(x)

        return x


# 初始化模型
model = ResNet18().to(device)

# 构造损失函数和优化器
criterion = nn.CrossEntropyLoss()
opt = optim.SGD(model.parameters(), lr=0.01, momentum=0.8, weight_decay=0.001)

# 动态更新学习率------每隔step_size : lr = lr * gamma
schedule = optim.lr_scheduler.StepLR(opt, step_size=10, gamma=0.6, last_epoch=-1)

loss_list = []


# train
def train(epoch):
    start = time.time()
    for epoch in range(epoch):
        running_loss = 0.0
        for i, (inputs, labels) in enumerate(train_loader, 0):

            inputs, labels = inputs.to(device), labels.to(device)

            # 将数据送入模型训练
            outputs = model(inputs)
            # 计算损失
            loss = criterion(outputs, labels).to(device)

            # 重置梯度
            opt.zero_grad()
            # 计算梯度,反向传播
            loss.backward()
            # 根据反向传播的梯度值优化更新参数
            opt.step()

            # 100个batch的 loss 之和
            running_loss += loss.item()
            loss_list.append(loss.item())

            # 每一百个 batch 查看一下 平均loss
            if (i + 1) % 100 == 0:
                print('epoch = %d , batch = %d , loss = %.6f' % (epoch + 1, i + 1, running_loss / 100))
                running_loss = 0.0

        # 每一轮结束输出一下当前的学习率 lr
        lr_1 = opt.param_groups[0]['lr']
        print("learn_rate:%.15f" % lr_1)
        schedule.step()

    end = time.time()
    # 计算并打印输出你的训练时间
    print("time:{}".format(end - start))

    # 训练过程可视化
    plt.plot(loss_list)
    plt.ylabel('loss')
    plt.xlabel('Epoch')
    plt.show()


# Test
def verify():
    model.eval()
    correct = 0.0
    total = 0
    # 训练模式不需要反向传播更新梯度
    with torch.no_grad():
        print("=======================test=======================")
        for inputs, labels in test_loader:
            inputs, labels = inputs.to(device), labels.to(device)
            outputs = model(inputs)

            pred = outputs.argmax(dim=1)  # 返回每一行中最大值元素索引
            total += inputs.size(0)
            correct += torch.eq(pred, labels).sum().item()

    print("Accuracy of the network on the 10000 test images:%.5f %%" % (100 * correct / total))
    print("===============================================")


if __name__ == '__main__':
    train(100)
    verify()
    # ResNet18: 所有卷积层全部使用使用3*3的卷积核, 两个3*3=一个5*5 同时可以减少参数量, 加深神经网络的深度
    # 使用 ResNet-18 的神经网络训练 CIFAR10 数据集的准确率在 90% 左右





最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
平台声明:文章内容(如有图片或视频亦包括在内)由作者上传并发布,文章内容仅代表作者本人观点,简书系信息发布平台,仅提供信息存储服务。

推荐阅读更多精彩内容