读书笔记-sklearn笔记

本文是该系列读书笔记的第二章数据预处理部分

import pandas as pd
import numpy as np

获取数据

import os 
import tarfile
from six.moves import urllib
download_root="https://raw.githubusercontent.com/ageron/handson-ml/master/"
house_path="datasets/housing"
housing_url=download_root+house_path+"/housing.tgz"
def fecthing_housing_data(housing_url=housing_url,house_path=house_path):
    if not os.path.exists(house_path):
        os.makedirs(house_path)
    tgz_path=os.path.join(house_path,'housing.tgz')
    urllib.request.urlretrieve(housing_url,tgz_path)
    housing_tgz=tarfile.open(tgz_path)
    housing_tgz.extractall(path=house_path)
    housing_tgz.close()
def load_housing_data(house_path=house_path):
    csv_path=os.path.join(house_path,"housing.csv")
    return pd.read_csv(csv_path)

数据的初步分析,数据探索

# fecthing_housing_data()  # 下载数据,解压出csv文件
housing=load_housing_data()
housing.head()
image
housing.info()
# total_bedrooms 存在缺失值,
# 前9列为float格式,经度,维度,房龄中位数,总的房间数,卧室数目,人口,家庭数,收入中位数,房屋价格的中位数,
# 最后一列为离海距离为object类型
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 20640 entries, 0 to 20639
Data columns (total 10 columns):
longitude             20640 non-null float64
latitude              20640 non-null float64
housing_median_age    20640 non-null float64
total_rooms           20640 non-null float64
total_bedrooms        20433 non-null float64
population            20640 non-null float64
households            20640 non-null float64
median_income         20640 non-null float64
median_house_value    20640 non-null float64
ocean_proximity       20640 non-null object
dtypes: float64(9), object(1)
memory usage: 1.6+ MB
# 需要查看ocean_proximity都包含哪些,
housing['ocean_proximity'].value_counts()
<1H OCEAN     9136
INLAND        6551
NEAR OCEAN    2658
NEAR BAY      2290
ISLAND           5
Name: ocean_proximity, dtype: int64
# 对数值类型的特征进行初步的统计
housing.describe()
image
%matplotlib inline
import matplotlib.pyplot as plt
# 查看每个数值特征的分布,
housing.hist(bins=50,figsize=(20,15))
# plt.show()
image

地理分布

housing.plot(kind="scatter", x="longitude", y="latitude")
<matplotlib.axes._subplots.AxesSubplot at 0x19bbfcc0>
image
housing.plot(kind="scatter", x="longitude", y="latitude",alpha=0.4)
# 标量,可选,默认值无,alpha混合值,介于0(透明)和1(不透明)之间
# 显示高密度区域的散点图,颜色越深,表示人口越密集,虽然我对加州的地理位置不是特别清楚
<matplotlib.axes._subplots.AxesSubplot at 0x1a705b70>
image
housing.plot(kind='scatter',x='longitude',y='latitude',alpha=0.4,
            s=housing['population']/50,label='population',
            c='median_house_value',cmap=plt.get_cmap("jet"),colorbar=True,
            figsize=(9,6))
# import matplotlib
# plt.figure(figsize=(15,9)) 
# sc=plt.scatter(housing['longitude'],housing['latitude'],alpha=0.4,
#             s=housing['population']/100,label='population',
#             c=housing['median_house_value'],cmap=plt.get_cmap("jet"))
# plt.legend()
# matplotlib.rcParams["font.sans-serif"]=["SimHei"]
# matplotlib.rcParams['axes.unicode_minus'] = False
# matplotlib.rcParams['font.size'] =15
# plt.xlabel('经度')
# plt.ylabel('纬度')
# color_bar=plt.colorbar(sc)
# color_bar.set_label('meidan_house_value')
# plt.show()
#以上为使用plt的完整代码,将坐标轴的内容以及添加colorbar,设置中文坐标轴标题
<matplotlib.axes._subplots.AxesSubplot at 0x19ffb390>
image
#  房价与位置和人口密度联系密切,但是如何用数学的角度来描述几个变量之间的关联呢,可以使用标准相关系数standard correlation coefficient 
# 常用的相关系数为皮尔逊相关系数
corr_matrix = housing.corr()
corr_matrix
image

数据特征的相关性

import seaborn as sns
plt.Figure(figsize=(25,20))
hm=sns.heatmap(corr_matrix,cbar=True,annot=True,square=True,fmt='.2f',annot_kws={'size':9}, cmap="YlGnBu")
plt.show()
image
corr_matrix['median_house_value'].sort_values(ascending=False)
"""
相关系数的范围是 -1 到 1。当接近 1 时,意味强正相关;
例如,当收入中位数增加时,房价中位数也会增加。
当相关系数接近 -1 时,意味强负相关;
纬度和房价中位数有轻微的负相关性(即,越往北,房价越可能降低)。
最后,相关系数接近 0,意味没有线性相关性。
"""
# 使用pandas中的scatter_matrix 可以从另外一种角度分析多个变量之间的相关性
from pandas.plotting import  scatter_matrix
attributes=['median_house_value',"median_income","total_bedrooms","housing_median_age"]
scatter_matrix(housing[attributes],figsize=(12,9))
# sns.pairplot(housing[['median_house_value',"median_income",]],height=5)
# 使用seaborn中的pariplot可以实现同样的结果
housing.plot(kind="scatter",x='median_income',y='median_house_value',alpha=0.2)
<matplotlib.axes._subplots.AxesSubplot at 0x1e3df9e8>
image
image

创建新的特征

  • 重点关注收入的中位数与房屋价值的中位数之间的关系,从上图以及相关系数都可以得到两者之间存在很明显的正相关
  • 可以清洗的看到向上的趋势,并且数据点不是非常分散,
  • 我们之前统计得到的最高房价位于5000000美元的水平线
  • 从频率分布直方图hist可以看到housing_median_age ,meidan_house_value 具有长尾分布,可以尝试对其进行log或者开根号等转化
  • 当然,不同项目的处理方法各不相同,但大体思路是相似的。
housing['rooms_per_household']=housing['total_rooms']/housing['households']
housing['bedrooms_per_room']= housing['total_bedrooms']/housing['total_rooms']
housing['population_per_household']=housing['population']/housing['households']
corr_matrix = housing.corr()
corr_matrix['median_house_value'].sort_values(ascending=False)
# """
# 新的特征房间中,卧室占比与房屋价值中位数有着更明显的负相关性,比例越低,房价越高;
# 每家的房间数也比街区的总房间数的更有信息,很明显,房屋越大,房价就越高
# """
median_house_value          1.000000
median_income               0.688075
rooms_per_household         0.151948
total_rooms                 0.134153
housing_median_age          0.105623
households                  0.065843
total_bedrooms              0.049686
population_per_household   -0.023737
population                 -0.024650
longitude                  -0.045967
latitude                   -0.144160
bedrooms_per_room          -0.255880
Name: median_house_value, dtype: float64

数据清洗, 创建处理流水线

  • 缺失值处理
  • 处理object文本数据类型
  • 特征放缩
  • 构建模型pepeline
  • 以上几个步骤我们在之前的博客中基本上都已经用过,这里作为读书笔记不会再过多的详细解释
# total_bedrooms特征缺失值处理
"""
- 去掉含有缺失值的样本,dropna()
- 去掉含有缺失值的特征 dropna(axis=1)
- 进行填充(中位数,平均值,0,插值填充) fillna(housing['total_bedrooms'].median()) 较为方便的使用pandas中的方法
"""
from sklearn.preprocessing import Imputer
imputer=Imputer(strategy='mean')
housing_num=housing.drop('ocean_proximity',axis=1)
imputer.fit(housing_num)
Imputer(axis=0, copy=True, missing_values='NaN', strategy='mean', verbose=0)
housing_num_trans=pd.DataFrame(imputer.transform(housing_num),columns=housing_num.columns)
housing_num_trans.info()
# 缺失值补齐,总觉得如果是缺失值处理的话,可以直接用pandas中的fillna会节省一点时间,在原始的数据上直接处理掉,后面也就不用再去担心这个
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 20640 entries, 0 to 20639
Data columns (total 12 columns):
longitude                   20640 non-null float64
latitude                    20640 non-null float64
housing_median_age          20640 non-null float64
total_rooms                 20640 non-null float64
total_bedrooms              20640 non-null float64
population                  20640 non-null float64
households                  20640 non-null float64
median_income               20640 non-null float64
median_house_value          20640 non-null float64
rooms_per_household         20640 non-null float64
bedrooms_per_room           20640 non-null float64
population_per_household    20640 non-null float64
dtypes: float64(12)
memory usage: 1.9 MB
# 处理文本object类型数据
from sklearn.preprocessing import  LabelEncoder
encoder= LabelEncoder()
house_cat=housing['ocean_proximity']
house_cat_encode=encoder.fit_transform(house_cat)
house_cat_encode
array([3, 3, 3, ..., 1, 1, 1], dtype=int64)
encoder.classes_
array(['<1H OCEAN', 'INLAND', 'ISLAND', 'NEAR BAY', 'NEAR OCEAN'],
      dtype=object)
  • 在之前博客中也提到类似的操作,改操作可能会将两个临近的值
  • 比两个疏远的值更为相似,因此一般情况下,对与类标才会使用LabelEncoder,对于特征不会使用该方式对特征转换
  • 更为常用的操作是独热编码,给每个分类创建一个二元属性,比如当分类是INLAND,有则是1,没有则是0
  • skleanrn中提供了编码器OneHotEncoder,类似与pandas中pd.get_dummies()
from sklearn.preprocessing import OneHotEncoder
# OneHotEncoder只能对数值型数据进行处理,只接受2D数组
encoder=OneHotEncoder()
housing_cat_1hot=encoder.fit_transform(house_cat_encode.reshape((-1,1)))
housing_cat_1hot
<20640x5 sparse matrix of type '<class 'numpy.float64'>'
    with 20640 stored elements in Compressed Sparse Row format>
housing_cat_1hot.toarray()
array([[0., 0., 0., 1., 0.],
       [0., 0., 0., 1., 0.],
       [0., 0., 0., 1., 0.],
       ...,
       [0., 1., 0., 0., 0.],
       [0., 1., 0., 0., 0.],
       [0., 1., 0., 0., 0.]])
# 使用LabelBinarizer 可以实现同样的效果
from sklearn.preprocessing import  LabelBinarizer
encoder=LabelBinarizer()
housing_cat_1hot=encoder.fit_transform(house_cat)
housing_cat_1hot
array([[0, 0, 0, 1, 0],
       [0, 0, 0, 1, 0],
       [0, 0, 0, 1, 0],
       ...,
       [0, 1, 0, 0, 0],
       [0, 1, 0, 0, 0],
       [0, 1, 0, 0, 0]])
# 直接在原始的数据上使用pandas.get_dummies()是最简单的方法
pd.get_dummies(housing[['ocean_proximity']]).head()
image
  • 特征放缩 我们常用到的MinMaxScaler和StandandScaler两种
  • 一般会对不同范围内的特征进行放缩,有助于优化算法收敛的速度(尤其是针对梯度提升的优化算法)
  • 归一化: 减去最小值,然后除以最大最小值的差
  • 标准化: 减去平均值,然后除以方差,得到均值为0,方差为1的标准正态分布,受异常值影响比较小,决策树和随机森林不需要特征放缩
  • 特征放缩一般针对训练数据集进行transform_fit,对测试集数据进行transform
# 从划分数据集→pipeline   从这里开始算是一个完整的数据处理流程
from sklearn.model_selection import  train_test_split
housing=load_housing_data()
# train_set, test_set = train_test_split(housing, test_size=0.2, random_state=42)  #  随机采样
from sklearn.model_selection import StratifiedShuffleSplit  #  分层采样

split = StratifiedShuffleSplit(n_splits=1, test_size=0.2, random_state=42)
housing["income_cat"] = np.ceil(housing["median_income"] / 1.5)
housing["income_cat"].where(housing["income_cat"] < 5, 5.0, inplace=True)

for train_index, test_index in split.split(housing, housing["income_cat"]): # 按照收入中位数进行分层采样
    strat_train_set = housing.loc[train_index]
    strat_test_set = housing.loc[test_index]
housing = strat_train_set.copy()  # 创建一个副本,以免损伤训练集,
housing.info()
<class 'pandas.core.frame.DataFrame'>
Int64Index: 16512 entries, 17606 to 15775
Data columns (total 11 columns):
longitude             16512 non-null float64
latitude              16512 non-null float64
housing_median_age    16512 non-null float64
total_rooms           16512 non-null float64
total_bedrooms        16354 non-null float64
population            16512 non-null float64
households            16512 non-null float64
median_income         16512 non-null float64
median_house_value    16512 non-null float64
ocean_proximity       16512 non-null object
income_cat            16512 non-null float64
dtypes: float64(10), object(1)
memory usage: 1.5+ MB
#转化流水线
from sklearn.pipeline import Pipeline
from sklearn.preprocessing import StandardScaler
num_pipeline=Pipeline([('imputer',Imputer(strategy='median')),('std_scaler',StandardScaler())])
housing = strat_train_set.drop("median_house_value", axis=1)
housing_labels = strat_train_set["median_house_value"].copy()
housing_num=housing.drop('ocean_proximity',axis=1)
housing_num_tr = num_pipeline.fit_transform(housing_num)
housing_cat=housing['ocean_proximity']
housing_cat_tr= LabelBinarizer().fit_transform(housing_cat)
housing_train=np.c_[housing_num_tr,housing_cat_tr]
housing_train.shape
#  数字特征与categoriy 特征不能同时进行转化,需要进行FeatureUnion
# 你给它一列转换器(可以是所有的转换器),当调用它的transform()方法,每个转换器的transform()会被并行执行,
# 等待输出,然后将输出合并起来,并返回结果
# 当然也可以通过分批转化,然后通过np将转化好的数据集合并,本质上没有什么区别,只不过对于测试集仍然需要transform,然后再合并成转化好的测试集
(16512, 14)
import os
import sys
sys.path.append(os.getcwd())
from future_encoders import ColumnTransformer
from future_encoders import OneHotEncoder
#  都是从future_encoders 这个单独的包中导入的,OneHotEncoder不是从preprocessing中导入的
num_attribs = list(housing_num)
cat_attribs = ["ocean_proximity"]

full_pipeline = ColumnTransformer([
        ("num", num_pipeline, num_attribs),
        ("cat", OneHotEncoder(), cat_attribs),
    ])

housing_prepared = full_pipeline.fit_transform(housing)
housing_prepared
array([[-1.15604281,  0.77194962,  0.74333089, ...,  0.        ,
         1.        ,  0.        ],
       [-1.17602483,  0.6596948 , -1.1653172 , ...,  0.        ,
         1.        ,  0.        ],
       [ 1.18684903, -1.34218285,  0.18664186, ...,  0.        ,
         1.        ,  1.        ],
       ...,
       [ 1.58648943, -0.72478134, -1.56295222, ...,  0.        ,
         1.        ,  0.        ],
       [ 0.78221312, -0.85106801,  0.18664186, ...,  0.        ,
         1.        ,  0.        ],
       [-1.43579109,  0.99645926,  1.85670895, ...,  0.        ,
         1.        ,  0.        ]])
# 比较两种方法获得的处理之后的矩阵是否等价
np.allclose(housing_prepared, housing_train)
True
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 213,992评论 6 493
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,212评论 3 388
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 159,535评论 0 349
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,197评论 1 287
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,310评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,383评论 1 292
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,409评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,191评论 0 269
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,621评论 1 306
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,910评论 2 328
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,084评论 1 342
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,763评论 4 337
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,403评论 3 322
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,083评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,318评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,946评论 2 365
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,967评论 2 351

推荐阅读更多精彩内容

  • Swift1> Swift和OC的区别1.1> Swift没有地址/指针的概念1.2> 泛型1.3> 类型严谨 对...
    cosWriter阅读 11,094评论 1 32
  • 1.ios高性能编程 (1).内层 最小的内层平均值和峰值(2).耗电量 高效的算法和数据结构(3).初始化时...
    欧辰_OSR阅读 29,352评论 8 265
  • 佛手身份概括 佛手:属于武夷山外来引进品种,原产地为泉州永春,叶形非常大还厚,在武夷山岩茶品种中属于最大的叶片之一...
    f6afe8fe24a5阅读 310评论 0 0
  • 无论他们到什么地方去,都应该觉得回忆是一条不归路。一切以往的春天已不复返!那狂乱而坚韧的爱情不过是瞬间即逝的现实罢...
    路云书禹阅读 847评论 0 0
  • 今天,女儿说告诉我一个秘密,你猜,王艺才喜欢我们班谁?我说猜不出来,她说喜欢我。一般男生喜欢欺负哪个女生,就是喜欢...
    3e8e95d56b9c阅读 192评论 0 0