CNS图表复现08—肿瘤单细胞数据第一次分群通用规则

本文是参考学习CNS图表复现08—肿瘤单细胞数据第一次分群通用规则
的学习笔记。可能根据学习情况有所改动。

文章的第一次分群按照 :

immune (CD45+,PTPRC),
epithelial/cancer (EpCAM+,EPCAM),
stromal (CD10+,MME,fibo or CD31+,PECAM1,endo)
的表达量分布,文章提到的各大亚群细胞数量是:(epithelial cells [n = 5,581], immune cells [n = 13,431], stromal cells [n = 4,249]). 我们可以很容易复现出来。

首先检查第一次分群的4个基因

rm(list=ls())
options(stringsAsFactors = F)
library(Seurat)
library(ggplot2)
load(file = 'first_sce.Rdata')
sce=sce.first 
# epithelial/cancer (EpCAM+,EPCAM),   
# immune (CD45+,PTPRC), 
# stromal (CD10+,MME,fibo or CD31+,PECAM1,endo)  
genes_to_check = c("PTPRC","EPCAM",'PECAM1','MME',"CD3G","CD3E", "CD79A")
p <- DotPlot(sce, features = genes_to_check,
             assay='RNA' )  
p

出图如下:

图片

为了避免出错,需要先定义下epi亚群

EPCAM=dat[dat$features.plot=='EPCAM',]
fivenum(EPCAM$avg.exp.scaled)
epi=EPCAM[EPCAM$avg.exp.scaled > -0.5,]$id
epi
sce@meta.data$immune_annotation <-ifelse(sce@meta.data$seurat_clusters  %in% imm ,'immune',
                                         ifelse(sce@meta.data$seurat_clusters  %in% epi ,'epi','stromal') )
# MAke a table 
table(sce@meta.data$immune_annotation)
# The resulting cell clusters were annotated as immune, stromal (fibroblasts, endothelial cells, and melanocytes), or epithelial cells 
# (epithelial cells [n = 5,581], immune cells [n = 13,431], stromal cells [n = 4,249]).

我们的数量是:得到的细胞数量也跟文章差不多:

> table(sce@meta.data$immune_annotation)
    epi  immune stromal 
   5444   13792    4278 

肉眼可以看到的分群如下:

> imm # immune (CD45+,PTPRC), 
 [1] "0"  "1"  "2"  "10" "11" "14" "16" "17" "19" "21" "5" 
> epi # epithelial/cancer (EpCAM+,EPCAM), 
[1] "3"  "8"  "9"  "12" "15" "17" "18" "20" "22"
> stromal
[1] "4"  "6"  "7"  "13" "23" "24"

第一次分群后,继续看文章列出来了的各种基因的在这3个主要的细胞亚群表达情况,代码如下:

genes_to_check = c("PTPRC","EPCAM","CD3G","CD3E", "CD79A", "BLNK","MS4A1", "CD68", "CSF1R", 
                   "MARCO", "CD207", "PMEL", "ALB", "C1QB", "CLDN5", "FCGR3B", "COL1A1")
# All on Dotplot 
p <- DotPlot(sce, features = genes_to_check,group.by = 'immune_annotation') + coord_flip()
p

出图如下:

图片

可以说是非常完美啦!

看了大概一百多篇,基本上都是首先区分成为:上皮细胞、免疫细胞、内皮细胞和成纤维细胞

比如2020年9月24日,来自新加坡基因组研究院的Ramanuj DasGupta团队在Cell上在线发表题为“Onco-fetal Reprogramming of Endothelial Cells Drives Immunosuppressive Macrophages in Hepatocellular Carcinoma”的文章,绘制了一张人类肝脏从发育到疾病的单细胞图谱,揭示了一个可以同时驱动胎肝发育和HCC的免疫抑制的肿瘤-胚胎重编程生态系统,为HCC的治疗干预提供了新靶点。也是首先区分成为:上皮细胞、免疫细胞、内皮细胞和成纤维细胞,如下:

图片

最简单的比较,就是不同细胞亚群在不同的生物学分组的单细胞样品的比例差异,其次是各种各样的差异表达量分析。然后可以对第一次得到上皮细胞、免疫细胞、内皮细胞和成纤维细胞分群进行再分群。

尤其是免疫细胞,分群非常复杂。后续我们慢慢讲。

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
平台声明:文章内容(如有图片或视频亦包括在内)由作者上传并发布,文章内容仅代表作者本人观点,简书系信息发布平台,仅提供信息存储服务。

推荐阅读更多精彩内容

  • 我们之前也发表过有关新冠病毒受体ACE2组织分布的解读,基本上是利用公共数据库对其分布及特异性进行分析,而这篇文章...
    生信宝典阅读 2,316评论 0 6
  • 夜莺2517阅读 127,752评论 1 9
  • 版本:ios 1.2.1 亮点: 1.app角标可以实时更新天气温度或选择空气质量,建议处女座就不要选了,不然老想...
    我就是沉沉阅读 6,940评论 1 6
  • 我是一名过去式的高三狗,很可悲,在这三年里我没有恋爱,看着同龄的小伙伴们一对儿一对儿的,我的心不好受。怎么说呢,高...
    小娘纸阅读 3,414评论 4 7
  • 我是黑夜里大雨纷飞的人啊 1 “又到一年六月,有人笑有人哭,有人欢乐有人忧愁,有人惊喜有人失落,有的觉得收获满满有...
    陌忘宇阅读 8,592评论 28 53