-
We're going to create raging sea only by using shaders
-
Set up
<script setup>
import * as THREE from 'three'
import {OrbitControls} from 'three/addons/controls/OrbitControls.js'
import * as dat from 'dat.gui'
/**
* scene
*/
const scene = new THREE.Scene()
/**
* mesh
*/
const plane = new THREE.Mesh(
new THREE.PlaneGeometry(2, 2, 128, 128),
new THREE.MeshBasicMaterial({
color: '#fff'
})
)
plane.rotation.x = - Math.PI * 0.5
scene.add(plane)
/**
* camera
*/
const camera = new THREE.PerspectiveCamera(
75,
window.innerWidth / window.innerHeight,
0.1,
100
)
camera.position.set(1, 1, 1)
/**
* renderer
*/
const renderer = new THREE.WebGLRenderer()
renderer.setSize(window.innerWidth, window.innerHeight)
document.body.appendChild(renderer.domElement)
window.addEventListener('resize', () => {
camera.aspect = window.innerWidth / window.innerHeight
camera.updateProjectionMatrix()
renderer.setSize(window.innerWidth, window.innerHeight)
renderer.setPixelRatio(Math.min(window.devicePixelRatio, 2))
})
/**
* axesHelper
*/
const axesHelper = new THREE.AxesHelper(5)
scene.add(axesHelper)
/**
* controls
*/
const controls = new OrbitControls(camera, renderer.domElement)
controls.enableDamping = true
/**
* tick
*/
const clock = new THREE.Clock()
const tick = () => {
const elapsedTime = clock.getElapsedTime()
controls.update()
requestAnimationFrame(tick)
renderer.render(scene, camera)
}
tick()
/**
* gui
*/
const gui = new dat.GUI()
</script>
-
Replace the mesh
and replace the material
with shaderMaterial
import vertexShader from './raging-sea/vertex.glsl'
import fragmentShader from './raging-sea/fragment.glsl'
/**
* water
*/
const waterGeometry = new THREE.PlaneGeometry(2, 2, 512, 512)
const waterMaterial = new THREE.ShaderMaterial({
vertexShader,
fragmentShader,
side: THREE.DoubleSide
})
const water = new THREE.Mesh(waterGeometry, waterMaterial)
water.rotation.x = - Math.PI * 0.5
scene.add(water)
// vertex.glsl
void main () {
// 模型矩阵 - mesh
vec4 modelPosition = modelMatrix * vec4(position, 1.0);
// 视图矩阵 - camera
vec4 viewPosition = viewMatrix * modelPosition;
// 投影矩阵 - 坐标
vec4 projectedPosition = projectionMatrix * viewPosition;
gl_Position = projectedPosition;
}
// fragment.glsl
void main () {
gl_FragColor = vec4(0.5, 0.8, 1.0, 1.0);
}
-
Big waves
const waterMaterial = new THREE.ShaderMaterial({
...
uniforms: {
uBigWavesElevation: {value: 0.2}, // 高度
},
side: THREE.DoubleSide
})
gui.add(waterMaterial.uniforms.uBigWavesElevation, 'value')
.min(0)
.max(1)
.step(0.001)
.name('uBigWavesElevation')
// vertex.glsl
uniform float uBigWavesElevation;
void main () {
// 模型矩阵 - mesh
vec4 modelPosition = modelMatrix * vec4(position, 1.0);
float elevation = sin(modelPosition.x) * uBigWavesElevation;
modelPosition.y += elevation;
// 视图矩阵 - camera
vec4 viewPosition = viewMatrix * modelPosition;
// 投影矩阵 - 坐标
vec4 projectedPosition = projectionMatrix * viewPosition;
gl_Position = projectedPosition;
}
- 当前我们只使用了x值在y轴上产生了波动,那么下一步想要实现在2个轴上同时波动(使用z值在y轴上波动)
const waterMaterial = new THREE.ShaderMaterial({
uniforms: {
uBigWavesElevation: {value: 0.2}, // 高度
uBigWavesFrequency: {value: new THREE.Vector2(4, 1.5)}, // 频率,折叠次数
},
side: THREE.DoubleSide
})
gui.add(waterMaterial.uniforms.uBigWavesFrequency.value, 'x')
.min(0)
.max(10)
.step(0.001)
.name('uBigWavesFrequencyX')
gui.add(waterMaterial.uniforms.uBigWavesFrequency.value, 'y')
.min(0)
.max(10)
.step(0.001)
.name('uBigWavesFrequencyY')
// vertex.glsl
uniform float uBigWavesElevation;
uniform vec2 uBigWavesFrequency; // 使用该变量时取得是x、y的值,但实际使用是发生在x、z轴上
void main () {
// 模型矩阵 - mesh
vec4 modelPosition = modelMatrix * vec4(position, 1.0);
float elevation = sin(modelPosition.x * uBigWavesFrequency.x) *
sin(modelPosition.z * uBigWavesFrequency.y) *
uBigWavesElevation;
modelPosition.y += elevation;
// 视图矩阵 - camera
vec4 viewPosition = viewMatrix * modelPosition;
// 投影矩阵 - 坐标
vec4 projectedPosition = projectionMatrix * viewPosition;
gl_Position = projectedPosition;
}
-
Animate, we use the elapsedTime
const waterMaterial = new THREE.ShaderMaterial({
uniforms: {
uTime: {value: 0},
uBigWavesElevation: {value: 0.2}, // 高度
uBigWavesFrequency: {value: new THREE.Vector2(4, 1.5)}, // 频率,折叠次数
},
side: THREE.DoubleSide
})
/**
* tick
*/
const clock = new THREE.Clock()
const tick = () => {
const elapsedTime = clock.getElapsedTime()
// update water
waterMaterial.uniforms.uTime.value = elapsedTime
controls.update()
requestAnimationFrame(tick)
renderer.render(scene, camera)
}
tick()
// vertex.glsl
uniform float uTime;
...
void main () {
// 模型矩阵 - mesh
vec4 modelPosition = modelMatrix * vec4(position, 1.0);
float elevation = sin(modelPosition.x * uBigWavesFrequency.x + uTime) *
sin(modelPosition.z * uBigWavesFrequency.y + uTime) *
uBigWavesElevation;
modelPosition.y += elevation;
....
...
}
-
We can control the speed of the waves, we're going to use the same speed for both axes
const waterMaterial = new THREE.ShaderMaterial({
vertexShader,
fragmentShader,
uniforms: {
uTime: {value: 0},
uBigWavesElevation: {value: 0.2}, // 高度
uBigWavesFrequency: {value: new THREE.Vector2(4, 1.5)}, // 频率,折叠次数
uBigWaveSpeed: {value: 0.75}, // 速度
},
side: THREE.DoubleSide
})
gui.add(waterMaterial.uniforms.uBigWaveSpeed, 'value')
.min(0)
.max(4)
.step(0.001)
.name('uBigWaveSpeed')
// vertex.glsl
...
uniform float uBigWaveSpeed;
void main () {
// 模型矩阵 - mesh
vec4 modelPosition = modelMatrix * vec4(position, 1.0);
float elevation = sin(modelPosition.x * uBigWavesFrequency.x + uTime * uBigWaveSpeed) *
sin(modelPosition.z * uBigWavesFrequency.y + uTime * uBigWaveSpeed) *
uBigWavesElevation;
modelPosition.y += elevation;
// 视图矩阵 - camera
vec4 viewPosition = viewMatrix * modelPosition;
// 投影矩阵 - 坐标
vec4 projectedPosition = projectionMatrix * viewPosition;
gl_Position = projectedPosition;
}
-
Color
- we're going to use a different color for the depth and for the surface
- we want to be able to tweak the color, so we must to create
debugObject
/**
* water
*/
...
const debugObject = {}
debugObject.depthColor = '#186691'
debugObject.surfaceColor = '#9bd8ff'
const waterMaterial = new THREE.ShaderMaterial({
...
uniforms: {
...
...
uDepthColor: {value: new THREE.Color(debugObject.depthColor)},
uSurfaceColor: {value: new THREE.Color(debugObject.surfaceColor)},
},
side: THREE.DoubleSide
})
gui.addColor(debugObject, 'depthColor')
.name('depthColor')
.onChange(() => {
waterMaterial.uniforms.uDepthColor.value.set(debugObject.depthColor) // 同步更新uniform
})
gui.addColor(debugObject, 'surfaceColor')
.name('surfaceColor')
.onChange(() => {
waterMaterial.uniforms.uSurfaceColor.value.set(debugObject.surfaceColor) // 同步更新uniform
})
// fragment.glsl
uniform vec3 uDepthColor;
uniform vec3 uSurfaceColor;
void main () {
gl_FragColor = vec4(uDepthColor, 1.0);
// gl_FragColor = vec4(uSurfaceColor, 1.0);
}
-
we're going to create a mix between the uDepthColor
with the uSurfaceColor
according to the wave elevation, but the vElevation
goes from - 0.2 to + 0.2, so we add uColorOffset
and uColorMultiplier
const waterMaterial = new THREE.ShaderMaterial({
vertexShader,
fragmentShader,
uniforms: {
...
...
uDepthColor: {value: new THREE.Color(debugObject.depthColor)},
uSurfaceColor: {value: new THREE.Color(debugObject.surfaceColor)},
uColorOffset: {value: 0.08}, // 颜色偏移量
uColorMultiplier: {value: 5},
},
side: THREE.DoubleSide
})
gui.add(waterMaterial.uniforms.uColorOffset, 'value')
.min(0)
.max(1)
.step(0.001)
.name('uColorOffset')
gui.add(waterMaterial.uniforms.uColorMultiplier, 'value')
.min(0)
.max(10)
.name('uColorMultiplier')
// vertex.glsl
...
...
varying float vElevation;
void main () {
...
float elevation = sin(modelPosition.x * uBigWavesFrequency.x + uTime * uBigWaveSpeed) *
sin(modelPosition.z * uBigWavesFrequency.y + uTime * uBigWaveSpeed) *
uBigWavesElevation;
...
...
// Varyings
vElevation = elevation;
}
-
create a mixStrength
variable and use it in the mix()
// fragment.glsl
uniform vec3 uDepthColor;
uniform vec3 uSurfaceColor;
uniform float uColorOffset;
uniform float uColorMultiplier;
varying float vElevation;
void main () {
float mixStrength = (vElevation + uColorOffset) * uColorMultiplier;
// mix()
// 前2个参数,类型必须相同
// 第三个值为0,则是第一种颜色
// 第三个值为1,则是第二种颜色
// 第三个值在0和1之间,即参数和颜色的结合
// vElevation 根据前面vertex的计算,该值的范围是[-0.2, 0.2]
vec3 color = mix(uDepthColor, uSurfaceColor, mixStrength); // 根据起伏高度混合颜色
gl_FragColor = vec4(color, 1.0);
}
-
Small waves
- we're going to use a 3D perlin noise to make the waves change in time, add it before your
main
function
- 在当前波浪的线条上再添加小波浪
- 使波浪呈现波峰、波谷,呈现混乱、不规律
const waterMaterial = new THREE.ShaderMaterial({
vertexShader,
fragmentShader,
uniforms: {
uTime: {value: 0},
uBigWavesElevation: {value: 0.2}, // 高度
uBigWavesFrequency: {value: new THREE.Vector2(4, 1.5)}, // 频率,折叠次数
uBigWaveSpeed: {value: 0.75}, // 速度
uSmallWavesElevation: {value: 0.15},
uSmallWavesFrequency: {value: 3},
uSmallWavesSpeed: {value: 0.2},
uSmallIterations: {value: 4.0},
uDepthColor: {value: new THREE.Color(debugObject.depthColor)},
uSurfaceColor: {value: new THREE.Color(debugObject.surfaceColor)},
uColorOffset: {value: 0.08}, // 颜色偏移量
uColorMultiplier: {value: 5},
},
side: THREE.DoubleSide
})
gui.add(waterMaterial.uniforms.uSmallWavesElevation, 'value')
.min(0)
.max(1)
.step(0.001)
.name('uSmallWavesElevation')
gui.add(waterMaterial.uniforms.uSmallWavesFrequency, 'value')
.min(0)
.max(30)
.step(0.001)
.name('uSmallWavesFrequency')
gui.add(waterMaterial.uniforms.uSmallWavesSpeed, 'value')
.min(0)
.max(4)
.step(0.001)
.name('uSmallWavesSpeed')
gui.add(waterMaterial.uniforms.uSmallIterations, 'value')
.min(0)
.max(5)
.step(1)
.name('uSmallIterations')
// vertex.glsl
uniform float uTime;
uniform float uBigWavesElevation;
uniform vec2 uBigWavesFrequency; // 使用该变量时取得是x、y的值,但实际使用是发生在x、z轴上
uniform float uBigWaveSpeed;
uniform float uSmallWavesElevation;
uniform float uSmallWavesFrequency;
uniform float uSmallWavesSpeed;
uniform float uSmallIterations;
varying float vElevation;
// Classic Perlin 3D Noise
// by Stefan Gustavson
//
vec4 permute(vec4 x){return mod(((x*34.0)+1.0)*x, 289.0);}
vec4 taylorInvSqrt(vec4 r){return 1.79284291400159 - 0.85373472095314 * r;}
vec3 fade(vec3 t) {return t*t*t*(t*(t*6.0-15.0)+10.0);}
float cnoise(vec3 P){
vec3 Pi0 = floor(P); // Integer part for indexing
vec3 Pi1 = Pi0 + vec3(1.0); // Integer part + 1
Pi0 = mod(Pi0, 289.0);
Pi1 = mod(Pi1, 289.0);
vec3 Pf0 = fract(P); // Fractional part for interpolation
vec3 Pf1 = Pf0 - vec3(1.0); // Fractional part - 1.0
vec4 ix = vec4(Pi0.x, Pi1.x, Pi0.x, Pi1.x);
vec4 iy = vec4(Pi0.yy, Pi1.yy);
vec4 iz0 = Pi0.zzzz;
vec4 iz1 = Pi1.zzzz;
vec4 ixy = permute(permute(ix) + iy);
vec4 ixy0 = permute(ixy + iz0);
vec4 ixy1 = permute(ixy + iz1);
vec4 gx0 = ixy0 / 7.0;
vec4 gy0 = fract(floor(gx0) / 7.0) - 0.5;
gx0 = fract(gx0);
vec4 gz0 = vec4(0.5) - abs(gx0) - abs(gy0);
vec4 sz0 = step(gz0, vec4(0.0));
gx0 -= sz0 * (step(0.0, gx0) - 0.5);
gy0 -= sz0 * (step(0.0, gy0) - 0.5);
vec4 gx1 = ixy1 / 7.0;
vec4 gy1 = fract(floor(gx1) / 7.0) - 0.5;
gx1 = fract(gx1);
vec4 gz1 = vec4(0.5) - abs(gx1) - abs(gy1);
vec4 sz1 = step(gz1, vec4(0.0));
gx1 -= sz1 * (step(0.0, gx1) - 0.5);
gy1 -= sz1 * (step(0.0, gy1) - 0.5);
vec3 g000 = vec3(gx0.x,gy0.x,gz0.x);
vec3 g100 = vec3(gx0.y,gy0.y,gz0.y);
vec3 g010 = vec3(gx0.z,gy0.z,gz0.z);
vec3 g110 = vec3(gx0.w,gy0.w,gz0.w);
vec3 g001 = vec3(gx1.x,gy1.x,gz1.x);
vec3 g101 = vec3(gx1.y,gy1.y,gz1.y);
vec3 g011 = vec3(gx1.z,gy1.z,gz1.z);
vec3 g111 = vec3(gx1.w,gy1.w,gz1.w);
vec4 norm0 = taylorInvSqrt(vec4(dot(g000, g000), dot(g010, g010), dot(g100, g100), dot(g110, g110)));
g000 *= norm0.x;
g010 *= norm0.y;
g100 *= norm0.z;
g110 *= norm0.w;
vec4 norm1 = taylorInvSqrt(vec4(dot(g001, g001), dot(g011, g011), dot(g101, g101), dot(g111, g111)));
g001 *= norm1.x;
g011 *= norm1.y;
g101 *= norm1.z;
g111 *= norm1.w;
float n000 = dot(g000, Pf0);
float n100 = dot(g100, vec3(Pf1.x, Pf0.yz));
float n010 = dot(g010, vec3(Pf0.x, Pf1.y, Pf0.z));
float n110 = dot(g110, vec3(Pf1.xy, Pf0.z));
float n001 = dot(g001, vec3(Pf0.xy, Pf1.z));
float n101 = dot(g101, vec3(Pf1.x, Pf0.y, Pf1.z));
float n011 = dot(g011, vec3(Pf0.x, Pf1.yz));
float n111 = dot(g111, Pf1);
vec3 fade_xyz = fade(Pf0);
vec4 n_z = mix(vec4(n000, n100, n010, n110), vec4(n001, n101, n011, n111), fade_xyz.z);
vec2 n_yz = mix(n_z.xy, n_z.zw, fade_xyz.y);
float n_xyz = mix(n_yz.x, n_yz.y, fade_xyz.x);
return 2.2 * n_xyz;
}
void main () {
// 模型矩阵 - mesh
vec4 modelPosition = modelMatrix * vec4(position, 1.0);
float elevation = sin(modelPosition.x * uBigWavesFrequency.x + uTime * uBigWaveSpeed) *
sin(modelPosition.z * uBigWavesFrequency.y + uTime * uBigWaveSpeed) *
uBigWavesElevation;
for (float i = 1.0; i <= uSmallIterations; i++) {
elevation -= abs(cnoise(vec3(modelPosition.xz * uSmallWavesFrequency * i, uTime * uSmallWavesSpeed)) * uBigWavesElevation / i);
}
modelPosition.y += elevation;
// 视图矩阵 - camera
vec4 viewPosition = viewMatrix * modelPosition;
// 投影矩阵 - 坐标
vec4 projectedPosition = projectionMatrix * viewPosition;
gl_Position = projectedPosition;
// Varyings
vElevation = elevation;
}