TVM X86环境编译

TVM 简介

TVM 可以将不用的深度学习框架的算法部署到不同的硬件平台来完成计算,网上对于这部分的资料比较少。
我会逐步将自己学习过程中的一些过程记录下来,方便有需求的人。如果能帮助到你,欢迎打赏。

TVM X86 环境配置

代码及编译依赖准备

  1. sudo apt-get update
  2. sudo apt-get install -y python python-dev python-setuptools gcc libtinfo-dev zlib1g-dev build-essential cmake
  3. git clone --recursive https://github.com/dmlc/tvm
  4. mkdir build
  5. cp cmake/config.cmake build
  6. 编辑config.cmake, 来开启或者关闭一些配置。例如要开启cpu 的llvm 编译,首先要获取llvm的安装包: http://releases.llvm.org/download.html
    然后将USE_LLVM OFF 改为 set(USE_LLVM /path/to/your/llvm/bin/llvm-config)

编译及环境变量设置

  1. cd build
    cmake ..
    make -j4
  2. 如果一切顺利,则在build目录下会生成:libtvm.so, libtvm_topi.so 。之后可以配置Python环境变量,为了方便以后python代码的更新,建议直接将当前的python环境配置到系统环境中,而不是将python代码拷贝到已经有的环境变量目录。在 ~/.bashrc中添加以下字段:
    export TVM_HOME=/path/to/tvm
    export PYTHONPATH=TVM_HOME/python:TVM_HOME/topi/python:TVM_HOME/nnvm/python:{PYTHONPATH}
    然后刷新下环境变量source ~/.bashrc即可
  3. PC 上最好再安装一些Python的库,方便后面测试以及模型优化:
    pip install --user numpy decorator attrs tornado psutil xgboost

测试 Demo

import numpy as np

from tvm import relay
from tvm.relay import testing
import tvm
from tvm.contrib import graph_runtime

batch_size = 1
num_class = 1000
image_shape = (3, 224, 224)
data_shape = (batch_size,) + image_shape
out_shape = (batch_size, num_class)

net, params = relay.testing.resnet.get_workload(
    num_layers=18, batch_size=batch_size, image_shape=image_shape)

# set show_meta_data=True if you want to show meta data
print(net.astext(show_meta_data=False))


opt_level = 3
target = tvm.target.cuda()
with relay.build_config(opt_level=opt_level):
    graph, lib, params = relay.build_module.build(
        net, target, params=params)


# create random input
ctx = tvm.cpu()
data = np.random.uniform(-1, 1, size=data_shape).astype("float32")
# create module
module = graph_runtime.create(graph, lib, ctx)
# set input and parameters
module.set_input("data", data)
module.set_input(**params)
# run
module.run()
# get output
out = module.get_output(0, tvm.nd.empty(out_shape)).asnumpy()

# Print first 10 elements of output
print(out.flatten()[0:10])
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 205,386评论 6 479
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 87,939评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 151,851评论 0 341
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,953评论 1 278
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,971评论 5 369
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,784评论 1 283
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,126评论 3 399
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,765评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 43,148评论 1 300
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,744评论 2 323
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,858评论 1 333
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,479评论 4 322
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,080评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,053评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,278评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,245评论 2 352
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,590评论 2 343

推荐阅读更多精彩内容