Python机器学习随笔之K-Means聚类的实现

  1. K-Means聚类原理

K-means算法是很典型的基于距离的聚类算法,采用距离作为相似性的评价指标,即认为两个对象的距离越近,其相似度就越大。其基本思想是:以空间中k个点为中心进行聚类,对最靠近他们的对象归类。通过迭代的方法,逐次更新各聚类中心的值,直至得到最好的聚类结果。各聚类本身尽可能的紧凑,而各聚类之间尽可能的分开。
算法大致流程为:(1)随机选取k个点作为种子点(这k个点不一定属于数据集);(2)分别计算每个数据点到k个种子点的距离,离哪个种子点最近,就属于哪类;(3)重新计算k个种子点的坐标(简单常用的方法是求坐标值的平均值作为新的坐标值;(4)重复2、3步,直到种子点坐标不变或者循环次数完成。

2.数据及其寻找初步的聚类中心
数据为Matlab加载格式(mat),包含X变量,数据来源为(大家可以去这下载):
https://github.com/jdwittenauer/ipython-notebooks/tree/master/data
X为300*2维变量,由于是2维,所以基本上就是在平面坐标轴上的一些点中进行聚类。

我们首先构建初步寻找聚类中心(centroids,质心)函数,再随机设置初始质心,通过欧氏距离初步判断X的每一个变量属于哪个质心。代码为:

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sb
from scipy.io import loadmat

def find_closest_centroids(X, centroids):
    m = X.shape[0]
    k = centroids.shape[0] #要聚类的类别个数
    idx = np.zeros(m)  
    
    for i in range(m):
        min_dist = 1000000  #迭代终止条件
        for j in range(k):
            dist = np.sum((X[i,:] - centroids[j,:]) ** 2) 
            if dist < min_dist:
               # 记录当前最短距离和其中心的索引值
                min_dist = dist
                idx[i] = j
    
    return idx
data = loadmat('D:\python\Python ml\ex7data2.mat')
X = data['X']
initial_centroids = np.array([[3, 3], [6, 2], [8, 5]])

idx = find_closest_centroids(X, initial_centroids)
idx[0:3]

在这里先生成m(这里为300)个0向量,即idx,也就是假设X的每个变量均属于0类,然后再根据与初始质心的距离计算dist = np.sum((X[i,:] - centroids[j,:]) ** 2),初步判断每个变量归属哪个类,最终替代idx中的0.

3.不断迭代寻找质心的位置并实现kmeans算法
上述idx得到的300维向量是判断X中每个变量的归属类别,在此基础上,再对初始质心集群位置不断调整,寻找最优质心。

def compute_centroids(X, idx, k):
    m, n = X.shape
    centroids = np.zeros((k, n))
    
    for i in range(k):
        indices = np.where(idx == i)
        centroids[i,:] = (np.sum(X[indices,:], axis=1) / len(indices[0])).ravel()
    #这里简单的将该类中心的所有数值求平均值作为新的类中心
return centroids
compute_centroids(X, idx, 3)

根据上述函数,来构建kmeans函数实现K-means聚类算法。然后根据得到的每个变量归属类别与质心坐标,进行可视化。

def run_k_means(X, initial_centroids, max_iters):
    m, n = X.shape
    k = initial_centroids.shape[0]
    idx = np.zeros(m)
    centroids = initial_centroids
    
    for i in range(max_iters):
        idx = find_closest_centroids(X, centroids)
        centroids = compute_centroids(X, idx, k)
    
    return idx, centroids
idx, centroids = run_k_means(X, initial_centroids, 10)
cluster1 = X[np.where(idx == 0)[0],:] #获取X中属于第一个类别的数据集合,即类别1的点
cluster2 = X[np.where(idx == 1)[0],:]
cluster3 = X[np.where(idx == 2)[0],:]

fig, ax = plt.subplots(figsize=(12,8))
ax.scatter(cluster1[:,0], cluster1[:,1], s=30, color='r', label='Cluster 1')
ax.scatter(cluster2[:,0], cluster2[:,1], s=30, color='g', label='Cluster 2')
ax.scatter(cluster3[:,0], cluster3[:,1], s=30, color='b', label='Cluster 3')
ax.legend()
plt.show()

得到图形如下:
image.png

4.关于初始化质心的设置
我们前边设置的初始质心:[3, 3], [6, 2], [8, 5],是事先设定的,并由此生成idx(每一变量归属类别的向量),这是后边进行kmeans聚类的基础,实际上对于二维以上数据,由于无法在平面坐标轴展示,很难一开始就设定较好的初始质心,另外,初始质心的设定也可能会影响算法的收敛性。所以需要我们再构造个初始化质心设定函数,来更好地设置初始质心。

def init_centroids(X, k):
    m, n = X.shape
    centroids = np.zeros((k, n))  #初始化零矩阵
    idx = np.random.randint(0, m, k)  #返回0-m之间的整数值
    
    for i in range(k):
        centroids[i,:] = X[idx[i],:]
    
return centroids
init_centroids(X, 3)

这里所生成的初始质心位置,其实就是从X的数据中随机找3个变量作为初始值。在此基础上,令initial_centroids = init_centroids(X, 3),然后代入前边的code中,重新运行一遍即可。

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 203,362评论 5 477
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,330评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 150,247评论 0 337
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,560评论 1 273
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,580评论 5 365
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,569评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,929评论 3 395
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,587评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,840评论 1 297
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,596评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,678评论 1 329
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,366评论 4 318
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,945评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,929评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,165评论 1 259
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 43,271评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,403评论 2 342

推荐阅读更多精彩内容