推荐系统:爱奇艺知识推荐系统架构

爱奇艺知识频道当前已经包含了2万精品课程,涵盖职场、文史、IT/互联网等多个分类,这么多课程怎么实现高效分发是一个大难题,通过搜索触达、人工运营位、IP导流等方式确实可以分发一批课程,然而这些课程普遍集中于头部热度课程,暴露在用户面前的仍然是冰山的顶部,大量的课程由于信息过载没有暴露的机会,挖掘长尾课程防止过度马太效应,推荐系统责任重大。

1、表现形式


爱奇艺知识当前的推荐系统有如图几个表现形式:

个性化分群运营:根据画像做用户分群,按群推荐课程;

猜你喜欢:个性化课程推荐流;

相关推荐:课程页面内的相关推荐;

买了又买:购买成功页的课程推荐;

2、系统架构

系统架构上图,主要流程如下:

数据处理:使用spark、hive、python,从mysql备库、hbase、pingback的hive表和实时流提取数据,实现关联、清洗、映射特征等处理,其中spark streaming从pingback的rockermq准实时提取用户行为,实现10秒钟用户个性化推荐列表的更新;

模型计算:使用spark als矩阵分解计算,结果可以给用户推荐协同过滤、以及根据item vectors实现相关推荐;使用tensorflow/paddle实现排序模型,使用LR/DNN/DEEP&WIDE实现CTR排序;

结果数据存储:这里涉及比较多的考虑,主要是从数据量、查询响应时间、数据结构支持度等方面考虑:

对于item本身实体数据、item相似度列表等数据,使用redis存储,因为redis cluster不能够批量读取,但是这里却需要批量读取;

对于用户行为实时数据,因为需要大数据量存储,并且需要丰富的数据结构支持,选用redis cluster;

对于用户画像数据、自己提取的用户标签数据,数据量大,只需要根据用户ID提取,所以选用scylla;

在线服务:主要是参考youtube的推荐系统架构,将整体步骤细分为召回、排序、过滤、混排等步骤,其中:

召回、排序、已购等步骤,都是id在参与计算,等最终返回的时候,才查询实体业务数据;

模型排序服务使用grpc/brpc/http提供服务给应用服务调用;

应用服务同时需要支持AB Test的分桶,以及参数的返回;

前端请求:前端只进行非常短暂的缓存(防止恶意请求),重要的是需要搞定pingback的埋点投递,投递中需要设定ab test的参数

以上就是爱奇艺知识的推荐系统架构,系统还处于快速迭代升级中,之后的事情有这些:

当前系统在QPS高峰是耗时150MS左右,时间耗费在实体数据拼装阶段,后续进行优化;

相关推荐的导流效果很好,后续进行多种实验进行效果对比;

排序模型的线上化,通过AB测试进行效果对比;

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 219,539评论 6 508
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 93,594评论 3 396
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 165,871评论 0 356
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,963评论 1 295
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,984评论 6 393
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,763评论 1 307
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,468评论 3 420
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 39,357评论 0 276
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,850评论 1 317
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 38,002评论 3 338
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 40,144评论 1 351
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,823评论 5 346
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,483评论 3 331
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 32,026评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 33,150评论 1 272
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 48,415评论 3 373
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 45,092评论 2 355

推荐阅读更多精彩内容