Presto~数据查询工具/近实时计算利器


Presto实现原理和美团的使用实践 -
http://tech.meituan.com/presto.html
Facebook的数据仓库存储在少量大型Hadoop/HDFS集群。Hive是Facebook在几年前专为Hadoop打造的一款数据仓库工具。在以前,Facebook的科学家和分析师一直依靠Hive来做数据分析。但Hive使用MapReduce作为底层计算框架,是专为批处理设计的。但随着数据越来越多,使用Hive进行一个简单的数据查询可能要花费几分到几小时,显然不能满足交互式查询的需求。Facebook也调研了其他比Hive更快的工具,但它们要么在功能有所限制要么就太简单,以至于无法操作Facebook庞大的数据仓库。

2012年开始试用的一些外部项目都不合适,他们决定自己开发,这就是Presto。2012年秋季开始开发,目前该项目已经在超过 1000名Facebook雇员中使用,运行超过30000个查询,每日数据在1PB级别。Facebook称Presto的性能比Hive要好上10倍多。2013年Facebook正式宣布开源Presto。

本文首先介绍Presto从用户提交SQL到执行的这一个过程,然后尝试对Presto实现实时查询的原理进行分析和总结,最后介绍Presto在美团的使用情况。


近实时运算的利器---presto在公司实践 - joomlaer的专栏 - 博客频道 - CSDN.NET
http://blog.csdn.net/joomlaer/article/details/45889759

1.起因
公司hadoop集群里的datanonde和tasktracker节点负载主要集中于晚上到凌晨,平日工作时间负载不是很高。但在工作时间内,公司业务人员有实时查询需求,现在主要
借助于hive提供业务人员日常查询。总所周知,hive是一个基于MR的类SQL查询工具,它会把输入的查询SQL解释为MapReduce,能极大的降低使用大数据查询的门槛,
让一般的业务人员也可以直接对大数据进行查询。但一个弊病也是很明显,它的查询速度由于基于MR,会是非常的让人着急。

在Spark,Storm横行的时代,spark由于耗用内存高而很难满足这种改良的需求,Storm由于和hive不是一个套路,本身实时流处理的思路也和我们的需求差距较大,所以,
寻求一个能提供类似SQL查询接口,并且速度比较接近于实时,能利用现有集群硬件的实时SQL查询引擎成为一个现有hive的替代查询引擎。如果有这个引擎,可以利用
datanode,tasktracker上空闲的内存构成一个分布式的“数据加载内存池”,将数据加载到内存后,再进行计算,这样无疑会提高大数据查询的速度。
幸好,创造了hive的facebook,不负众望,创造了这么一款神器---presto。下面我们来看presto能给我们带来什么。

插图:日常各个dn和tt的节点的内存使用情况,白天有比较多的空闲时段

//
综上所述,presto是一个部署容易,又能较好利用空闲内存的近实时查询引擎。


如何开发 Presto 自定义函数(UDF)
http://mp.weixin.qq.com/s?__biz=MzI0NjIzNDkwOA==&mid=2247483876&idx=1&sn=538237d1536a8e3ca240b4f81a0194dd&chksm=e9432b97de34a281f5f31431ba5f6b2c6c50fc1cb1f3a79385704c9bf62f980c746e4ef8def3&scene=21#wechat_redirect
Presto 是 Facebook 开源的分布式查询引擎,在英语流利说的交互式查询任务中担当着重要的职责。随着越来越多的人开始使用 SQL 在 Presto 上分析数据,我们发现需要将一些业务逻辑开发成类似 Hive 中的 UDF,提高 SQL 使用人员的效率,同时也保证 Hive 和 Presto 环境中的 UDF 统一。
那我们就来聊聊如何开发 Presto 中的自定义函数(简称:UDF)。

总结
在英语流利说,我们开发了一个又一个的 Presto 自定义函数来提高 SQL 开发效率,例如调用 IP 数据库函数获取 IP 信息,甚至还可以在 SQL 中调用 RPC 服务进行特殊的数据转换。Presto 开发相关的文档不多,希望本文对大家有帮助。


英语流利说基础数据平台 - OPEN 开发经验库
http://www.open-open.com/lib/view/open1470725448459.html
数据查询工具 - Presto

Hive 在批处理上表现不错,但在交互式查询上,可能一个很小的查询就需要几十秒甚至数分钟; 因此对于这类查询,我们引入了 Presto,并且其依赖的数据源仍然在 S3 上。我们对Presto 维护了自己的分支,并且开发了 Presto UI 供数据分析人员使用。流利说是一家以数据驱动产品的公司,数据分析师以及产品经理,甚至销售每天会有若干的查询需要立即得到结果。除了基于 Presto,它需要拥有比较友好的UI,以及考虑到人员变动,我们需要做更严格的权限控制。另外,对于大量编写 SQL 的数据分析师,我们在 Sublime 上做了 Presto 插件,这使得在编写脚本时,天然拥有了高亮显示,字符提示等优势,当你完成脚本编写后,可以通过 Command + E 来执行你在 Sublime 中所选择的查询语句。

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 215,384评论 6 497
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,845评论 3 391
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 161,148评论 0 351
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,640评论 1 290
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,731评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,712评论 1 294
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,703评论 3 415
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,473评论 0 270
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,915评论 1 307
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,227评论 2 331
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,384评论 1 345
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,063评论 5 340
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,706评论 3 324
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,302评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,531评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,321评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,248评论 2 352

推荐阅读更多精彩内容