集合类主要包括List,Set,Map,Queue,类图如下:
Map
HashMap:它根据键的hashCode值存储数据,大多数情况下可以直接定位到它的值,因而具有很快的访问速度,但遍历顺序却是不确定的。 HashMap最多只允许一条记录的键为null,允许多条记录的值为null。HashMap非线程安全,即任一时刻可以有多个线程同时写HashMap,可能会导致数据的不一致。如果需要满足线程安全,可以用 Collections的synchronizedMap方法使HashMap具有线程安全的能力,或者使用ConcurrentHashMap。
JDK1.8中的结构为哈希桶数组(Node[] table)+链表+红黑树(采用链地址法解决hash冲突,红黑树减少拉链长度)
Node节点的实现为:
static class Node<K,V> implements Map.Entry<K,V> {
final int hash;
final K key;
V value;
Node<K,V> next;
Node(int hash, K key, V value, Node<K,V> next) {
this.hash = hash;
this.key = key;
this.value = value;
this.next = next;
}
public final K getKey() { return key; }
public final V getValue() { return value; }
public final String toString() { return key + "=" + value; }
public final int hashCode() {
return Objects.hashCode(key) ^ Objects.hashCode(value);
}
public final V setValue(V newValue) {
V oldValue = value;
value = newValue;
return oldValue;
}
public final boolean equals(Object o) {
if (o == this)
return true;
if (o instanceof Map.Entry) {
Map.Entry<?,?> e = (Map.Entry<?,?>)o;
if (Objects.equals(key, e.getKey()) &&
Objects.equals(value, e.getValue()))
return true;
}
return false;
}
}
红黑树转换时会将node转化为TreeNode
static final class TreeNode<K,V> extends LinkedHashMap.Entry<K,V> {
TreeNode<K,V> parent; // red-black tree links
TreeNode<K,V> left;
TreeNode<K,V> right;
TreeNode<K,V> prev; // needed to unlink next upon deletion
boolean red;
TreeNode(int hash, K key, V val, Node<K,V> next) {
super(hash, key, val, next);
}
//省略部分代码。。
}
/**
* HashMap.Node subclass for normal LinkedHashMap entries.
*/
static class Entry<K,V> extends HashMap.Node<K,V> {
Entry<K,V> before, after;
Entry(int hash, K key, V value, Node<K,V> next) {
super(hash, key, value, next);
}
}
// 所能容纳的key-value对极限 threshold = length(数组的长度,默认16) * Load factor
//超过threshold需要扩容,默认length为原来的两倍,length为2的n次方,主要是为了在取模和扩容时做优
//化,同时为了减少冲突,HashMap定位哈希桶索引位置时,也加入了高位参与运算的过程
int threshold;
final float loadFactor; // 负载因子,默认0.75
int modCount; //HashMap内部结构发生变化的次数,主要用于迭代的快速失败
int size; //所有node的数量
Hash算法:
static final int hash(Object key) { //jdk1.8 & jdk1.7
int h;
// h = key.hashCode() 为第一步 取hashCode值
// h ^ (h >>> 16) 为第二步 高位参与运算
return (key == null) ? 0 : (h = key.hashCode()) ^ (h >>> 16);
}
确定Node在数组中索引位置:
static int indexFor(int h, int length) { //jdk1.7的源码,jdk1.8没有这个方法,但是实现原理一样的
return h & (length-1); //第三步 取模,当length总是2的n次方时,h& (length-1)运算等价于对length取模
}
put方法:
扩容机制:
JDK1.7:头插法,多线程下会导致死循环
void resize(int newCapacity) { //传入新的容量
Entry[] oldTable = table; //引用扩容前的Entry数组
int oldCapacity = oldTable.length;
if (oldCapacity == MAXIMUM_CAPACITY) { //扩容前的数组大小如果已经达到最大(2^30)了
threshold = Integer.MAX_VALUE; //修改阈值为int的最大值(2^31-1),这样以后就不会扩容了
return;
}
Entry[] newTable = new Entry[newCapacity]; //初始化一个新的Entry数组
transfer(newTable); //!!将数据转移到新的Entry数组里
table = newTable; //HashMap的table属性引用新的Entry数组
threshold = (int)(newCapacity * loadFactor);//修改阈值
}
void transfer(Entry[] newTable) {
Entry[] src = table; //src引用了旧的Entry数组
int newCapacity = newTable.length;
for (int j = 0; j < src.length; j++) { //遍历旧的Entry数组
Entry<K,V> e = src[j]; //取得旧Entry数组的每个元素
if (e != null) {
src[j] = null;//释放旧Entry数组的对象引用(for循环后,旧的Entry数组不再引用任何对象)
do {
Entry<K,V> next = e.next;
int i = indexFor(e.hash, newCapacity); //!!重新计算每个元素在数组中的位置
e.next = newTable[i]; //标记[1] 头插法,将原来的数组位置节点放在e的next位置
newTable[i] = e; //将元素放在数组上
e = next; //访问下一个Entry链上的元素
} while (e != null);
}
}
}
JDK1.8:扩容是将capacity *2,确定数组下标的方法为 length -1 & hash值,就相当于链表中的节点可能还在原位置i,或者处于 i+ oldCapacity的位置。resize的时候也不会出现节点倒置。
final Node<K,V>[] resize() {
Node<K,V>[] oldTab = table;
int oldCap = (oldTab == null) ? 0 : oldTab.length;
int oldThr = threshold;
int newCap, newThr = 0;
if (oldCap > 0) {
if (oldCap >= MAXIMUM_CAPACITY) {
threshold = Integer.MAX_VALUE;
return oldTab;
}
else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY &&
oldCap >= DEFAULT_INITIAL_CAPACITY)
newThr = oldThr << 1; // double threshold
}
else if (oldThr > 0) // initial capacity was placed in threshold
newCap = oldThr;
else { // zero initial threshold signifies using defaults
newCap = DEFAULT_INITIAL_CAPACITY;
newThr = (int)(DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY);
}
if (newThr == 0) {
float ft = (float)newCap * loadFactor;
newThr = (newCap < MAXIMUM_CAPACITY && ft < (float)MAXIMUM_CAPACITY ?
(int)ft : Integer.MAX_VALUE);
}
threshold = newThr;
@SuppressWarnings({"rawtypes","unchecked"})
Node<K,V>[] newTab = (Node<K,V>[])new Node[newCap];
table = newTab;
if (oldTab != null) {
for (int j = 0; j < oldCap; ++j) {
Node<K,V> e;
if ((e = oldTab[j]) != null) {
oldTab[j] = null;
if (e.next == null)
newTab[e.hash & (newCap - 1)] = e;
else if (e instanceof TreeNode)
((TreeNode<K,V>)e).split(this, newTab, j, oldCap);
else { // preserve order
Node<K,V> loHead = null, loTail = null;
Node<K,V> hiHead = null, hiTail = null;
Node<K,V> next;
do {
next = e.next;
if ((e.hash & oldCap) == 0) {
if (loTail == null)
loHead = e;
else
loTail.next = e; //如果loTail有值,会更改hiTail对应Node的next的引用,从而做到顺序调整节点
loTail = e;
}
else {
if (hiTail == null)
hiHead = e;
else
hiTail.next = e; //如果hiTail有值,会更改hiTail对应Node的next的引用,从而做到顺序调整节点
hiTail = e;
}
} while ((e = next) != null);
if (loTail != null) {
loTail.next = null;
newTab[j] = loHead;
}
if (hiTail != null) {
hiTail.next = null;
newTab[j + oldCap] = hiHead;
}
}
}
}
}
return newTab;
}
Hashtable:Hashtable是遗留类,很多映射的常用功能与HashMap类似,不同的是它承自Dictionary类,并且是线程安全的,通过synchronized实现,任一时间只有一个线程能写Hashtable,并发性不如ConcurrentHashMap,因为ConcurrentHashMap引入了分段锁。Hashtable不建议在新代码中使用,不需要线程安全的场合可以用HashMap替换,需要线程安全的场合可以用ConcurrentHashMap替换。
Entry实现:
/**
* Hashtable bucket collision list entry
*/
private static class Entry<K,V> implements Map.Entry<K,V> {
final int hash;
final K key;
V value;
Entry<K,V> next;
protected Entry(int hash, K key, V value, Entry<K,V> next) {
this.hash = hash;
this.key = key;
this.value = value;
this.next = next;
}
@SuppressWarnings("unchecked")
protected Object clone() {
return new Entry<>(hash, key, value,
(next==null ? null : (Entry<K,V>) next.clone()));
}
// Map.Entry Ops
public K getKey() {
return key;
}
public V getValue() {
return value;
}
public V setValue(V value) {
if (value == null)
throw new NullPointerException();
V oldValue = this.value;
this.value = value;
return oldValue;
}
public boolean equals(Object o) {
if (!(o instanceof Map.Entry))
return false;
Map.Entry<?,?> e = (Map.Entry<?,?>)o;
return (key==null ? e.getKey()==null : key.equals(e.getKey())) &&
(value==null ? e.getValue()==null : value.equals(e.getValue()));
}
public int hashCode() {
return hash ^ Objects.hashCode(value);
}
public String toString() {
return key.toString()+"="+value.toString();
}
}
LinkedHashMap:LinkedHashMap是HashMap的一个子类,保存了记录的插入顺序,在用Iterator遍历LinkedHashMap时,先得到的记录肯定是先插入的,也可以在构造时带参数,按照访问次序排序。
/**
* HashMap.Node subclass for normal LinkedHashMap entries.
*/
static class Entry<K,V> extends HashMap.Node<K,V> {
Entry<K,V> before, after;
Entry(int hash, K key, V value, Node<K,V> next) {
super(hash, key, value, next);
}
}
TreeMap :使用红黑树实现,TreeMap实现SortedMap接口,能够把它保存的记录根据键排序,默认是按键值的升序排序,也可以指定排序的比较器,当用Iterator遍历TreeMap时,得到的记录是排过序的。如果使用排序的映射,建议使用TreeMap。在使用TreeMap时,key必须实现Comparable接口或者在构造TreeMap传入自定义的Comparator,否则会在运行时抛出java.lang.ClassCastException类型的异常。
static final class Entry<K,V> implements Map.Entry<K,V> {
K key;
V value;
Entry<K,V> left;
Entry<K,V> right;
Entry<K,V> parent;
boolean color = BLACK;
//省略部分代码
}
List
List集合代表一个元素有序,可重复的集合,集合中每个元素都有其对应的顺序索引。
ListIterator:可以向前迭代,而iterator只能够向后迭代。而且listIterator提供了add()的方法向List集合中添加元素,iterator只能够删除元素。
ArrayList
和Vector
类都是基于数组实现的List类,所以ArrayList和Vector类封装了一个动态的,允许再分配的Object[]数组。ArrayList或Vector对象使用initialCapaciy参数来设置该数组的长度,当向ArrayList或Vector中添加元素超出了该数组的长度时,他们的initialCapaciy会自动增长。
除此之外,两者的显著特征是ArrayList是线程不安全,Vector是线程安全的。为了使List变成线程安全的,可以使用Collections的工具类,不使用Vector,是因为过时了。
Vector还有个实现类Stack
,实现元素能够像栈的操作进行,先进后出。
LinkedList
:双链表实现,实现了List和Deque接口
public class LinkedList<E>
extends AbstractSequentialList<E>
implements List<E>, Deque<E>, Cloneable, java.io.Serializable
{
transient int size = 0;
transient Node<E> first;
transient Node<E> last;
public LinkedList() {
}
//....
}
private static class Node<E> {
E item;
Node<E> next;
Node<E> prev;
Node(Node<E> prev, E element, Node<E> next) {
this.item = element;
this.next = next;
this.prev = prev;
}
}
public boolean add(E e) {
linkLast(e);
return true;
}
Set
Set集合与Collection基本相同,没有提供任何额外的方法。实际上Set就是Collection,只是行为略有不同。Set集合不允许包含相同的元素,如果试图把两个相同的元素加入同一个Set集合中,添加操作失败,add()方法返回false,且新元素不会被加入。
HashSet
:HashMap实现
public class HashSet<E>
extends AbstractSet<E>
implements Set<E>, Cloneable, java.io.Serializable{
private transient HashMap<E,Object> map;
// Dummy value to associate with an Object in the backing Map
private static final Object PRESENT = new Object();
/**
* Constructs a new, empty set; the backing <tt>HashMap</tt> instance has
* default initial capacity (16) and load factor (0.75).
*/
public HashSet() {
map = new HashMap<>();
}
TreeSet
:基于TreeMap实现
public class TreeSet<E> extends AbstractSet<E>
implements NavigableSet<E>, Cloneable, java.io.Serializable
{
/**
* The backing map.
*/
private transient NavigableMap<E,Object> m;
// Dummy value to associate with an Object in the backing Map
private static final Object PRESENT = new Object();
/**
* Constructs a set backed by the specified navigable map.
*/
TreeSet(NavigableMap<E,Object> m) {
this.m = m;
}
public TreeSet() {
this(new TreeMap<E,Object>());
}
}
Queue
队列接口,先入先出,定义了如下接口:
//IllegalStateException: if the element cannot be added at this time due to capacity restrictions
boolean add(E e);
//if the element was added to this queue, else false
boolean offer(E e);
E remove();
/**
* Retrieves and removes the head of this queue. This method differs
* from {@link #poll poll} only in that it throws an exception if this
* queue is empty.
*/
E remove();
/**
* Retrieves and removes the head of this queue,
* or returns {@code null} if this queue is empty.
*/
E poll();
/**
* Retrieves, but does not remove, the head of this queue. This method
* differs from {@link #peek peek} only in that it throws an exception
* if this queue is empty.
*/
E element();
/**
* Retrieves, but does not remove, the head of this queue,
* or returns {@code null} if this queue is empty.
*/
E peek();
Deque
继承Queue接口,双端队列
void addFirst(E e);
void addLast(E e);
boolean offerFirst(E e);
boolean offerLast(E e);
E removeFirst();
E removeLast();
E pollFirst();
E pollLast();
/**
* Retrieves, but does not remove, the first element of this deque.
* This method differs from {@link #peekFirst peekFirst} only in that it
* throws an exception if this deque is empty.
*/
E getFirst();
/**
* Retrieves, but does not remove, the first element of this deque,
* or returns {@code null} if this deque is empty.
*/
E peekFirst();
boolean offer(E e);
E poll();
//也有一些栈的接口......
PriorityQueue
最小堆来实现,并且使用index=0的数组
使用index = 0元素的数组的父子节点的下标关系:
- k=父节点的index -> 左子节点的index = 2k + 1, 右子节点的index = (2 + 1)k
- j = 子节点的index -> 父节点的index = (j -1) / 2
相对有序:
1、数组来实现二叉树,所以满足二叉树的特性。
2、根元素是最小的元素,父节点小于它的两个子节点。
3、树中的元素是相对有序的。
//插入元素时,插入到数组中的最后一个元素的后面,然后与该节点的父节点比较大小。如果插入的元素小于
// 父节点元素,那么与父节点交换位置。然后插入元素交换到父节点位置时,又与该节点的父节点比较,直到
// 大于父节点元素或者到达堆顶。该过程叫做上浮,即插入时上浮。
public boolean offer(E e) {
if (e == null)
throw new NullPointerException();
modCount++;
int i = size;
if (i >= queue.length)
grow(i + 1);
size = i + 1;
if (i == 0)
queue[0] = e;
else
siftUp(i, e);
return true;
}
private void siftUp(int k, E x) {
if (comparator != null)
siftUpUsingComparator(k, x);
else
siftUpComparable(k, x);
}
//插入时上升
private void siftUpComparable(int k, E x) {
Comparable<? super E> key = (Comparable<? super E>) x;
while (k > 0) {
int parent = (k - 1) >>> 1;
Object e = queue[parent];
if (key.compareTo((E) e) >= 0)
break;
queue[k] = e;
k = parent;
}
queue[k] = key;
}
//移除元素时,只能从堆顶移除元素,再取最后一个元素放到堆顶中。然后堆顶节点与子节点比较时,先取子
// 节点中的较小者,如果堆顶节点大于较小子节点,那么交换位置。此时堆顶节点元素交换到较小子节点上。
// 然后再与其较小子节点比较,直到小于较小子节点或者到达叶子节点为止。该过程叫做下沉,即移除元素时
// 下沉。
public E poll() {
if (size == 0)
return null;
int s = --size;
modCount++;
E result = (E) queue[0];
E x = (E) queue[s];
queue[s] = null;
if (s != 0)
siftDown(0, x);
return result;
}
private void siftDown(int k, E x) {
if (comparator != null)
siftDownUsingComparator(k, x);
else
siftDownComparable(k, x);
}
//下沉
private void siftDownComparable(int k, E x) {
Comparable<? super E> key = (Comparable<? super E>)x;
int half = size >>> 1; // loop while a non-leaf
while (k < half) {
int child = (k << 1) + 1; // assume left child is least
Object c = queue[child];
int right = child + 1;
if (right < size &&
((Comparable<? super E>) c).compareTo((E) queue[right]) > 0)
c = queue[child = right];
if (key.compareTo((E) c) <= 0)
break;
queue[k] = c;
k = child;
}
queue[k] = key;
}
ArrayDeque
:数组实现
public class ArrayDeque<E> extends AbstractCollection<E>
implements Deque<E>, Cloneable, Serializable
{
transient Object[] elements; // non-private to simplify nested class access
transient int head;
transient int tail;
private static final int MIN_INITIAL_CAPACITY = 8;
}