Java中CountDownLatch和CyclicBarrier都是用来做多线程同步的。下面分析一下他们功能的异同。
CountDownLatch
CountDownLatch基于AQS(同步器AbstractQueuedSynchronizer浅析),CountDownLatch中有一个内部类Sync,Sync继承自AbstractQueuedSynchronizer。
我们先看一个CountDownLatch的例子,然后再具体分析源码。
一个CountDownLatch例子
import java.util.concurrent.CountDownLatch;
import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;
public class CountDownLatchExample {
private ExecutorService executorService;
private CountDownLatch countDownLatch;
private int parties;
public static void main(String[] args){
CountDownLatchExample countDownLatchExample = new CountDownLatchExample(10);
try {
countDownLatchExample.example();
} catch (InterruptedException e) {
e.printStackTrace();
}
}
public CountDownLatchExample(int parties) {
executorService = Executors.newFixedThreadPool(parties);
countDownLatch = new CountDownLatch(parties);
this.parties = parties;
}
public void example() throws InterruptedException {
for (int i = 0; i < parties; i++) {
executorService.submit(() -> {
try {
Thread.sleep(1000);
} catch (InterruptedException e) {
e.printStackTrace();
}
System.out.println(Thread.currentThread().getName() + " gets job done");
countDownLatch.countDown(); // 线程完成任务之后countDown
});
}
// 等待所有的任务完成
countDownLatch.await();
System.out.println(Thread.currentThread().getName() + " reach barrier");
executorService.shutdown();
}
}
上面是一个CountDownLatch的例子,CountDownLatch的API还是很简单的,主要就是countDown和await两个方法。CountDownLatch实例化时将count设置为AQS的state,每次countDown时CAS将state设置为state - 1,await时首先会检查当前state是否为0,如果为0则代表所有的任务完成了,await结束,否则主线程将循环重试,直到线程被中断或者任务完成或者等待超时。下面具体看看CountDownLatch的源码。
CountDownLatch源码分析
首先看一下CountDownLatch的构造函数和Sync的代码:
public CountDownLatch(int count) {
if (count < 0) throw new IllegalArgumentException("count < 0");
this.sync = new Sync(count); // 设置Sync(AQS)的state为count
}
private static final class Sync extends AbstractQueuedSynchronizer {
private static final long serialVersionUID = 4982264981922014374L;
Sync(int count) {
setState(count); // 设置AQS的state为count
}
int getCount() {
return getState();
}
//
protected int tryAcquireShared(int acquires) {
return (getState() == 0) ? 1 : -1; // 重写了AQS的方法
}
protected boolean tryReleaseShared(int releases) {
// Decrement count; signal when transition to zero
for (;;) { // 循环CAS重试
int c = getState();
if (c == 0)
return false;
int nextc = c-1;
if (compareAndSetState(c, nextc))
return nextc == 0;
}
}
}
CountDownLatch构造参数count代表当前参与同步的线程数目,然后设置当前AQS的状态为count。Sync覆写了tryAcquireShared和tryReleaseShared方法。tryAcquireShared方法中会判断当前AQS的state是否为0,如果是0才能获取成功(返回1),否则,获取失败(返回-1)。tryReleaseShared通过for循环进行CAS设置状态。
CountDownLatch中最主要的两个方法是:countDown和await:
public void await() throws InterruptedException {
sync.acquireSharedInterruptibly(1);
}
public boolean await(long timeout, TimeUnit unit)
throws InterruptedException {
return sync.tryAcquireSharedNanos(1, unit.toNanos(timeout));
}
public void countDown() {
sync.releaseShared(1);
}
每次一个任务完成之后,调用CountDownLatch的countDown方法,将当前AQS的state减1(AQS初始state为count)。countDown的逻辑其实比较简单,就是通过重试CAS设置当前AQS的state为state - 1。这里着重看一下await方法,await方法体中调用AQS的acquireSharedInterruptibly或者tryAcquireSharedNanos方法。看一下AQS的acquireSharedInterruptibly方法:
public final void acquireSharedInterruptibly(int arg)
throws InterruptedException {
if (Thread.interrupted())
throw new InterruptedException();
if (tryAcquireShared(arg) < 0) // tryAcquireShared这里已经在Sync中重写了
doAcquireSharedInterruptibly(arg);
}
private void doAcquireSharedInterruptibly(int arg)
throws InterruptedException {
final Node node = addWaiter(Node.SHARED);
boolean failed = true;
try {
for (;;) { // 循环重试
final Node p = node.predecessor(); // 对于CountDownLatch来说,等待队列中其实只有一个main线程在等待,因此这里第一次就应该判断条件`p == head`成立
if (p == head) {
int r = tryAcquireShared(arg); // 方法已经在CountDownLatch$Sync中重写了
if (r >= 0) {
setHeadAndPropagate(node, r);
p.next = null; // help GC
failed = false;
return;
}
}
// 如果当前失败,则挂起线程,循环重试
if (shouldParkAfterFailedAcquire(p, node) &&
parkAndCheckInterrupt())
throw new InterruptedException();
}
} finally {
if (failed)
cancelAcquire(node);
}
}
前面已经分析过AQS了,这里对AQS部分不多做解释了。主要是这里的tryAcquireShared方法,CountDownLatch的Sync内部类中重写了该方法。如果当前state等于0才能获取成功,因此只有当所有任务完成,此时AQS的state为0,await方法才会返回(不考虑中断和超时)。
CyclicBarrier
CyclicBarrier较CountDownLatch而言主要多了两个功能:
- 支持重置状态,达到循环利用的目的。这也是Cyclic的由来。CyclicBarrier中有一个内部类Generation,代表当前的同步处于哪一个阶段。当最后一个任务完成,执行任务的线程会通过nextGeneration方法来重置Generation。也可以通过CyclicBarrier的reset方法来重置Generation。
- 支持barrierCommand,当最后一个任务运行完成,执行任务的线程会检查CyclicBarrier的barrierCommand是否为null,如果不为null,则运行该任务。
一个CyclicBarrier例子
import java.util.concurrent.BrokenBarrierException;
import java.util.concurrent.CyclicBarrier;
import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;
public class CyclicBarrierExample {
private ExecutorService executorService;
private CyclicBarrier cyclicBarrier;
private int parties;
public CyclicBarrierExample(int parties) {
executorService = Executors.newFixedThreadPool(parties);
cyclicBarrier = new CyclicBarrier(parties, () -> System.out.println(Thread.currentThread().getName() + " gets barrierCommand done"));
this.parties = parties;
}
public static void main(String[] args) {
CyclicBarrierExample cyclicBarrierExample = new CyclicBarrierExample(10);
cyclicBarrierExample.example();
}
public void example() {
for (int i = 0; i < parties; i++) {
executorService.submit(() -> {
try {
Thread.sleep(1000);
cyclicBarrier.await();
} catch (InterruptedException e) {
e.printStackTrace();
} catch (BrokenBarrierException e) {
e.printStackTrace();
}
System.out.println(Thread.currentThread().getName() + " gets job done");
});
}
executorService.shutdown();
}
}
可以看到这里CyclicBarrier主要的API就是await方法,每个任务最后调用这个方法等待最后一个任务完成,在这之前所有的线程都会等待。
CyclicBarrier源码分析
CyclicBarrier主要有以下属性:
/** The lock for guarding barrier entry */
private final ReentrantLock lock = new ReentrantLock(); // 锁
/** Condition to wait on until tripped */
private final Condition trip = lock.newCondition(); // 锁关联的Condition,用于线程同步
/** The number of parties */
private final int parties; // 多少个任务参与同步
/* The command to run when tripped */
private final Runnable barrierCommand; // 最后一个任务运行线程应该执行的command
/** The current generation */
private Generation generation = new Generation(); // 当前CyclicBarrier所处的Generation
/**
* Number of parties still waiting. Counts down from parties to 0
* on each generation. It is reset to parties on each new
* generation or when broken.
*/
private int count; // 剩余的等待的任务数目,取值范围:[0-parties]
CyclicBarrier主要的API就是await方法和reset方法。
public int await() throws InterruptedException, BrokenBarrierException {
try {
return dowait(false, 0L); // 等待所有任务完成
} catch (TimeoutException toe) {
throw new Error(toe); // cannot happen
}
}
public void reset() {
final ReentrantLock lock = this.lock;
lock.lock();
try {
breakBarrier(); // break the current generation
// 开启下一个Generation,达到循环使用的目的
nextGeneration(); // start a new generation
} finally {
lock.unlock();
}
}
在每一个任务结束时我们调用CyclicBarrier的await方法,所有的线程都会等待最后一个任务完成才会退出。注意CountDownLatch中任务执行线程调用完了countDown方法之后就会退出,不会等待最后一个任务完成才会退出,这也是CountDownLatch和CyclicBarrier的一个区别。
我们主要看一下dowait方法:
private int dowait(boolean timed, long nanos)
throws InterruptedException, BrokenBarrierException,
TimeoutException {
final ReentrantLock lock = this.lock; // 加锁
lock.lock();
try {
final Generation g = generation; // 当前CyclicBarrier所处的Generation
if (g.broken) // 检查Generation的broken标志位
throw new BrokenBarrierException(); // 被中断
if (Thread.interrupted()) { // 检查当前线程是否被中断,响应中断
breakBarrier();
throw new InterruptedException();
}
int index = --count; // 剩余等待任务数
if (index == 0) { // tripped
boolean ranAction = false;
try {
final Runnable command = barrierCommand;
if (command != null) // 如果当前任务是最后一个任务,则执行任务线程运行barrierCommand
command.run();
ranAction = true;
nextGeneration(); // 重置Generation
return 0;
} finally {
if (!ranAction)
breakBarrier();
}
}
// loop until tripped, broken, interrupted, or timed out
for (;;) {
try {
// 阻塞当前线程,等待最后一个任务完成,然后线程会通过nextGeneration方法调用trip.signallAll唤醒等待线程。注意当线程进入WAITING(调用await)状态或者TIMED_WAITING(awaitNanos)状态后会让出锁。
if (!timed)
trip.await();
else if (nanos > 0L)
nanos = trip.awaitNanos(nanos);
} catch (InterruptedException ie) {
if (g == generation && ! g.broken) {
breakBarrier();
throw ie;
} else {
// We're about to finish waiting even if we had not
// been interrupted, so this interrupt is deemed to
// "belong" to subsequent execution.
Thread.currentThread().interrupt();
}
}
if (g.broken) // 响应中断
throw new BrokenBarrierException();
if (g != generation) // 已经是下一个generation,说明最后一个任务已经执行完成,返回
return index;
if (timed && nanos <= 0L) { // 检查是否超时
breakBarrier();
throw new TimeoutException();
}
}
} finally {
lock.unlock();
}
}
- 首先会检查当前Generation的broken标志位,如果为true,则抛出异常。再响应中断请求。
- 检查当前是否为最后一个任务,如果是则检查barrierCommand是否为null,如果不为null则执行任务。如果不是最后一个任务则到步骤3。
- 判断是否需要阻塞当前线程,如果需要则通过trip的await或者awaitNanos方法使其进入休眠,注意休眠后线程会让出锁。如果休眠超时则抛出TimeoutException异常。休眠完成后(要么休眠超时要么被最有一个任务执行线程唤醒)会响应中断请求,再判断当前generation是否改变(最后一个执行任务线程会通过nextGeneration方法改变generation),如果改变直接返回。
其流程图如下:
总结
- CountDownLatch和CyclicBarrier都是用作多线程同步,CountDownLatch基于AQS,CyclicBarrier基于ReentrantLock。
- CyclicBarrier支持复用和
barrierCommand
,但是CountDownLatch不支持。 - CyclicBarrier会阻塞线程,在最后一个任务执行线程完成之前,其余线程都必须等待,而线程在调用CountDownLatch的countDown方法之后就会结束。