算法:零钱兑换

问题

给定不同面额的硬币(coins)和一个总金额(amount) 。写一个函数来计算可以凑成总金额所需的最少的硬币个数,如果没有任何一种硬币组合能满足,返回 -1。

示例1

输入:coins = [1, 2, 5], amount = 11
输出:3 (5+5+1)

示例2

输入:coins = [2], amount = 3
输出:-1 (无法满足)

解决方案

暴力破解

暴力破解即穷举,把各种可能组成总金额的情况都匹配一遍,得到所有满足的组合,然后取硬币数量最少的那组。

实现思路

剩余金额减去当前使用的硬币金额
如果大于 0 ,继续使用硬币来组合;
如果等于 0 ,匹配完成,将当前组使用的硬币数与最小组合硬币数对比,取较小者;
如果小于 0 ,直接淘汰。

暴力破解分析
参考代码
public int CoinChange(int[] coins, int amount)
{
  // 如果输入的金额小于等于0,返回0
  if (amount <= 0) return 0;

  // 设置初始值为 amount + 1,实际不存在这种情况的,最坏的情况是 amount 
  var minCount = amount + 1;

  for (int i = 0; i < coins.Length; i++)
  {
    Cal(amount, coins, coins[i], new List<int>(), ref minCount);
  }
  return minCount == amount + 1 ? -1 : minCount;
}

public void Cal(int amount, int[] coins, int coin, List<int> curCoins, ref int minCount)
{
  // 剩余金额-使用的硬币金额, 得到新的剩余金额
  var leftAmount = amount - coin;

  // 如果等于0,说明找到了一组满足的组合
  if (leftAmount == 0)
  {
    curCoins.Add(coin);

    // 如果当前组使用的硬币数量小于当前最小组合的硬币数量,重置最小值
    if (curCoins.Count < minCount)
    {
      minCount = curCoins.Count;
    }
  }
  // 如果剩余金额大于0,说明还继续获取新的硬币加入集合
  else if (leftAmount > 0)
  {
    // 如果当前组的总硬币数量已经大于当前最小组合的硬币数量,就不需要在往下找了
    if (curCoins.Count >= minCount)
    {
      return;
    }

    // 继续下一次
    for (int i = 0; i < coins.Length; i++)
    {
      var newCoins = new List<int>(curCoins);
      newCoins.Add(coin);
      Cal(leftAmount, coins, coins[i], newCoins, ref minCount);
    }
  }
}
总结

从上图可以看出,获得所有可能组合的路线情况非常多,当 amount 值较小时复杂度还不算明显,随着 amount 越大,路线的深度(对应代码递归深度)会指数级增加(时间复杂度:2^n),所以当 amount 较大时这种方式必然不可取。

贪心

一般的贪心算法是先使用大币值,超界了就改用小币值,币值递减。

本题的币值是 [1,2,5],必然能用 2 肯定不会用 1,所以贪心没问题。但如果币值是 [1,5,6],当要组合总金额为 20 ,按贪心大币值的方式 6×3+1×2 = 20,需要使用 5 个硬币,而如果直接使用 5×4 = 20 只需要 4 个硬币,所以贪心并不合适,这里就先放弃该方案了。

动态规划
实现思路

定义 dp[i](dp[0] = 0)为组合成 i 时需要的最少硬币数,那么继续向前推就是 dp[i] = dp(i - coin[j]) 需要最少硬币数 + 1, + 1 是代表使用 coin[j] 算一次。

假设 i = 1:
当使用1币值组合,既 dp[1] = dp[0] + 1;

假设 i = 2:
当使用1币值组合,既 dp[2] = dp[1] + 1;
当使用2币值组合,既 dp[2] = dp[0] + 1;

假设 i = 3:
当使用1币值组合,既 dp[3] = dp[2] + 1;
当使用2币值组合,既 dp[3] = dp[1] + 1;

......

假设 i = 6:
当使用1币值组合,既 dp[6] = dp[5] + 1;
当使用2币值组合,既 dp[6] = dp[4] + 1;
当使用5币值组合,既 dp[6] = dp[1] + 1;

最终 dp[6] 取值为这 3 种情况的最小值。

动态规划的思路是将大问题化为子问题来解决,然后逐渐往大递推,所以得到最终的动态规划方程式为: dp[i] = Math.Min(dp[i], dp[i - coins[j]] + 1),dp[i] 的值可能会随着 coins[j] 不同而改变,所以需要将 dp[i] 和 dp[i - coins[j]] + 1 中较小值重新赋给 dp[i]。

参考代码
public int CoinChange(int[] coins, int amount)
{
  var dp = new int[amount + 1];
  // dp[0] 为 0,其他默认为 amount + 1(实际是不可能的),为了方便取对比结果中的最小值
  for (int i = 1; i < dp.Length; i++)
  {
    dp[i] = amount + 1;
  }

  // 计算 1~amount 每项 dp[i] 的值
  for (int i = 1; i <= amount; i++)
  {
    for (int j = 0; j < coins.Length; j++)
    {
      // 如果i能使用存在的面额来组合,得到每种面值组合后的最小值
      if (coins[j] <= i)
      {
        dp[i] = Math.Min(dp[i], dp[i - coins[j]] + 1);
      }
    }
  }

  // 如果 dp[amount] 是 amount + 1 ,代表没找到组合结果,否则返回组合成 amount 需要的最少硬币数 dp[amount]
  return dp[amount] > amount ? -1 : dp[amount];
}
总结

动态规划相比于暴力破解的方式就显得非常清晰、简洁了,它的时间复杂度是 O(amount×coins.length),核心点在于动态规划方程式的定义。

参考链接

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 212,294评论 6 493
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,493评论 3 385
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 157,790评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,595评论 1 284
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,718评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,906评论 1 290
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,053评论 3 410
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,797评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,250评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,570评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,711评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,388评论 4 332
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,018评论 3 316
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,796评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,023评论 1 266
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,461评论 2 360
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,595评论 2 350

推荐阅读更多精彩内容

  • 题意 样例 注意事项   这道题是一道非常典型的动态规划题,实际上不是很难。在这里记录的目的,一是为自己薄弱的动态...
    琼珶和予阅读 1,921评论 0 0
  • 0. 动态规划分析 0.1 动态规划、递归和贪心算法的区别 动态规划就是利用分治思想和解决冗余的办法来处理问题,所...
    dreamsfuture阅读 7,401评论 2 6
  • 1、前言 如上一篇文章结尾,提到的动态规划读表,本文就围绕动态规划读表展开。 2、零钱问题 题目 考虑仅用1分、5...
    mapleYe阅读 659评论 0 0
  • LeetCode基础算法-动态规划 LeetCode 动态规划 动态规划的核心步骤: 查看大问题的最优解能否使用小...
    24K男阅读 1,641评论 0 3
  • 1.简介: 在leetcode上刷题的时候,遇到了一道找零钱的动态规划题,后台测试用例很变态,必须把算法优化的很好...
    月塘路阅读 2,301评论 0 0