参考kaggle notebook:
keras
一、题目
1.项目题目:沃尔玛销量预测
预测沃尔玛未来28天的销量
2.评分标准:RMSSE
n为40341训练样本量,h为28天,Yt为实际销量值,Yt^为预测销量值
3.数据描述
数据有3049种产品,共3大类,7个部门,在3个洲的10个商场里销售
sales_train.csv:这是主要的训练集,含有每个从2011-1-29到2016-5-22的1941天每天的(不包括到2016-6-19的28天)销量,含商品的ID,部门,分类,商店,洲.
sell_prices.csv:商店的商品每周均价
calendar.csv:日期的星期、月份、年和该洲是否允许用食品券(food stamp,低收入家庭的补助)购买
二、正文
1.导入数据
#导入库
import pandas as pd
import seaborn as sns
import lightgbm as lgb
import numpy as np
#导入数据 import data
calendar = pd.read_csv('calendar.csv')
sample_submission = pd.read_csv('sample_submission.csv')
sales_train_validation = pd.read_csv('sales_train_validation.csv')
sell_prices = pd.read_csv('sell_prices.csv')
#减小内存占用 reduce the memory usage
def reduce_mem_usage(df, verbose=True):
numerics = ["int16", "int32", "int64", "float16", "float32", "float64"]
start_mem = df.memory_usage().sum() / 1024 ** 2
for col in df.columns:
col_type = df[col].dtypes
if col_type in numerics:
c_min = df[col].min()
c_max = df[col].max()
if str(col_type)[:3] == "int":
if c_min > np.iinfo(np.int8).min and c_max < np.iinfo(np.int8).max:
df[col] = df[col].astype(np.int8)
elif c_min > np.iinfo(np.int16).min and c_max < np.iinfo(np.int16).max:
df[col] = df[col].astype(np.int16)
elif c_min > np.iinfo(np.int32).min and c_max < np.iinfo(np.int32).max:
df[col] = df[col].astype(np.int32)
elif c_min > np.iinfo(np.int64).min and c_max < np.iinfo(np.int64).max:
df[col] = df[col].astype(np.int64)
else:
if (
c_min > np.finfo(np.float16).min
and c_max < np.finfo(np.float16).max
):
df[col] = df[col].astype(np.float16)
elif (
c_min > np.finfo(np.float32).min
and c_max < np.finfo(np.float32).max
):
df[col] = df[col].astype(np.float32)
else:
df[col] = df[col].astype(np.float64)
end_mem = df.memory_usage().sum() / 1024 ** 2
if verbose:
print(
"Mem. usage decreased to {:5.2f} Mb ({:.1f}% reduction)".format(
end_mem, 100 * (start_mem - end_mem) / start_mem
)
)
return df
#减小dataframe占用内存
print("缩小前占用内存为:",sell_prices.memory_usage().sum() / (1024 ** 2), "MB")
calendar = reduce_mem_usage(calendar)
sample_submission = reduce_mem_usage(sample_submission)
sales_train_validation = reduce_mem_usage(sales_train_validation)
sell_prices = reduce_mem_usage(sell_prices)
print("缩小后占用内存为:",sell_prices.memory_usage().sum() / (1024 ** 2), "MB")
sales_train_validation.head()
calendar.head()