Tensorboard——高级可视化

with tf.name_scope('SGD'):
    # Gradient Descent
    optimizer = tf.train.GradientDescentOptimizer(learning_rate)
    # Op to calculate every variable gradient
    grads = tf.gradients(loss, tf.trainable_variables())
    grads = list(zip(grads, tf.trainable_variables()))
    # Op to update all variables according to their gradient
    apply_grads = optimizer.apply_gradients(grads_and_vars=grads)
# Create summaries to visualize weights
for var in tf.trainable_variables():
    tf.summary.histogram(var.name, var)
# Summarize all gradients
for grad, var in grads:
    tf.summary.histogram(var.name + '/gradient', grad)
image.png

https://github.com/aymericdamien/TensorFlow-Examples/blob/master/examples/4_Utils/tensorboard_advanced.py

©著作权归作者所有,转载或内容合作请联系作者
【社区内容提示】社区部分内容疑似由AI辅助生成,浏览时请结合常识与多方信息审慎甄别。
平台声明:文章内容(如有图片或视频亦包括在内)由作者上传并发布,文章内容仅代表作者本人观点,简书系信息发布平台,仅提供信息存储服务。

相关阅读更多精彩内容

友情链接更多精彩内容