ArrayList源码一口闷

话不多说,先干为敬

初始容量的改变

ArrayList是java.util下的包,在JDK1.7之前ArrayList是有默认容量的,大小为10,JDK1.7之后就默认为0了,在执行add方法的时候才真正进行初始化默认容量10.


既然add是头,那就从add方法开始

add 方法    
public boolean add(E e) {
        //添加元素之前,先调用ensureCapacityInternal方法
        ensureCapacityInternal(size + 1);  // Increments modCount!!
        //这里看到ArrayList添加元素的实质就相当于为数组赋值
        elementData[size++] = e;
        return true;
    }

我们接着add方法往下走,也就是里面调用的ensureCapacityInternal(size + 1)方法:

private void ensureCapacityInternal(int minCapacity) {
        if (elementData == DEFAULTCAPACITY_EMPTY_ELEMENTDATA) {
            // 获取默认的容量和传入参数的较大值,比如初始为0,那就取10,也就是默认容量
            minCapacity = Math.max(DEFAULT_CAPACITY, minCapacity);
        }
        //判断是否需要扩容
        ensureExplicitCapacity(minCapacity);
    }

接下来看ensureExplicitCapacity

private void ensureExplicitCapacity(int minCapacity) {
        modCount++;

        // overflow-conscious code
        if (minCapacity - elementData.length > 0)
            //此方法为ArrayList的扩容方法
            grow(minCapacity);
    }

再接着看grow扩容方法

增加容量以确保其至少可以容纳最小容量参数指定的元素数

/**
     * 要分配的最大数组大小
     */
    private static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8;

    /**
     * ArrayList扩容的核心方法。
     */
    private void grow(int minCapacity) {
        // oldCapacity为旧容量,newCapacity为新容量
        int oldCapacity = elementData.length;
        //将oldCapacity 右移一位,其效果相当于oldCapacity /2,
        //我们知道位运算的速度远远快于整除运算,整句运算式的结果就是将新容量更新为旧容量的1.5倍,
        int newCapacity = oldCapacity + (oldCapacity >> 1);
        //然后检查新容量是否大于最小需要容量,若还是小于最小需要容量,那么就把最小需要容量当作数组的新容量,
        if (newCapacity - minCapacity < 0)
            newCapacity = minCapacity;
       // 如果新容量大于 MAX_ARRAY_SIZE,进入(执行) `hugeCapacity()` 方法来比较 minCapacity 和 MAX_ARRAY_SIZE,
       //如果minCapacity大于最大容量,则新容量则为`Integer.MAX_VALUE`,否则,新容量大小则为 MAX_ARRAY_SIZE 即为 `Integer.MAX_VALUE - 8`。
        if (newCapacity - MAX_ARRAY_SIZE > 0)
            newCapacity = hugeCapacity(minCapacity);
        // minCapacity is usually close to size, so this is a win:
        elementData = Arrays.copyOf(elementData, newCapacity);
    }


再来看下可能在大量add数据时候可能会用到的ensureCapacity方法

如有必要,增加此ArrayList实例的容量,以确保它至少可以容纳最小容量参数指定的元素数。

参数:
minCapacity –所需的最小容量

public void ensureCapacity(int minCapacity) {
        int minExpand = (elementData != DEFAULTCAPACITY_EMPTY_ELEMENTDATA)
            // any size if not default element table
            ? 0
            // larger than default for default empty table. It's already
            // supposed to be at default size.
            : DEFAULT_CAPACITY;

        if (minCapacity > minExpand) {
            ensureExplicitCapacity(minCapacity);
        }
    }

可以看到方法的本质还是调用ensureExplicitCapacity,还是扩容。那么这个方法什么场景用呢? 最好在 add 大量元素之前用 ensureCapacity 方法,以减少增量重新分配的次数和扩容时间:

/**
 * @ClassName testOne
 * @Description TODO
 * @Author zzr
 * @Date 2021/2/20 11:01
 * @Version 1.0
 */
public class testOne {
    public static void main(String[] args) {
        ArrayList<Object> list = new ArrayList<Object>();
        final int N = 10000000;
        long startTime = System.currentTimeMillis();
        for (int i = 0; i < N; i++) {
            list.add(i);
        }
        long endTime = System.currentTimeMillis();
        System.out.println("使用ensureCapacity方法前:"+(endTime - startTime));

        list = new ArrayList<Object>();
        long startTime1 = System.currentTimeMillis();
        list.ensureCapacity(N);
        for (int i = 0; i < N; i++) {
            list.add(i);
        }
        long endTime1 = System.currentTimeMillis();
        System.out.println("使用ensureCapacity方法后:"+(endTime1 - startTime1));
    }
}

结果:

使用ensureCapacity方法前:3604
使用ensureCapacity方法后:1922

Process finished with exit code 0

System.arraycopy()和Arrays.copyOf()对比

arraycopy()方法实现数组自己复制自己

/**
 * elementData : 源数组;
 * index : 源数组中的起始位置;
 * elementData : 目标数组;
 * index + 1 : 目标数组中的起始位置;
 * size - index : 要复制的数组元素的数量;
 */
  System.arraycopy(elementData, index, elementData, index + 1, size - index);

测试:

public static void main(String[] args) {
        int[] a = new int[10];
        int[] b = new int[10];
        a[0] = 1;
        a[1] = 2;
        a[2] = 3;
        a[3] = 4;
        System.out.println("原数组:");
        for (int i = 0; i < a.length; i++) {
            System.out.print(a[i]+" ");
        }

        System.arraycopy(a, 2, b, 3, 2);
        b[2]=33;
        System.out.println();
        System.out.println("处理之后数组:");
        for (int i = 0; i < b.length; i++) {
            System.out.print(b[i]+" ");
        }
    }

结果:

原数组:
1 2 3 4 0 0 0 0 0 0 
处理之后数组:
0 0 33 3 4 0 0 0 0 0 

ArrayList里面的toArray方法调用的就是Arrays.copyOf(),而copyOf的本质还是调用 System.arraycopy()
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 214,922评论 6 497
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,591评论 3 389
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 160,546评论 0 350
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,467评论 1 288
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,553评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,580评论 1 293
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,588评论 3 414
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,334评论 0 270
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,780评论 1 307
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,092评论 2 330
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,270评论 1 344
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,925评论 5 338
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,573评论 3 322
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,194评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,437评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,154评论 2 366
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,127评论 2 352