JVM性能优化

Java 应用性能优化是一个老生常谈的话题,典型的性能问题如页面响应慢、接口超时,服务器负载高、并发数低,数据库频繁死锁等。尤其是在“糙快猛”的互联网开发模式大行其道的今天,随着系统访问量的日益增加和代码的臃肿,各种性能问题开始纷至沓来。Java 应用性能的瓶颈点非常多,比如磁盘、内存、网络 I/O 等系统因素,Java 应用代码,JVM GC,数据库,缓存等。笔者根据个人经验,将 Java 性能优化分为 4 个层级:应用层、数据库层、框架层、JVM 层。

Java 性能优化分层模型

每层优化难度逐级增加,涉及的知识和解决的问题也会不同。比如应用层需要理解代码逻辑,通过 Java 线程栈定位有问题代码行等;数据库层面需要分析 SQL、定位死锁等;框架层需要懂源代码,理解框架机制;JVM 层需要对 GC 的类型和工作机制有深入了解,对各种 JVM 参数作用了然于胸。

对于调优这个事情来说,一般就是三个过程:

性能监控:问题没有发生,你并不知道你需要调优什么。此时需要一些系统、应用的监控工具来发现问题。

性能分析:问题已经发生,但是你并不知道问题到底出在哪里。此时就需要使用工具、经验对系统、应用进行瓶颈分析,以求定位到问题原因。

性能调优:经过上一步的分析定位到了问题所在,需要对问题进行解决,使用代码、配置等手段进行优化。

调优准备

调优是需要做好准备工作的,毕竟每一个应用的业务目标都不尽相同,性能瓶颈也不会总在同一个点上。在业务应用层面,我们需要:

需要了解系统的总体架构,明确压力方向。比如系统的哪一个接口、模块是使用率最高的,面临高并发的挑战。

需要构建测试环境来测试应用的性能,使用ab、loadrunner、jmeter都可以。

对关键业务数据量进行分析,这里主要指的是对一些数据的量化分析,如数据库一天的数据量有多少;缓存的数据量有多大等

了解系统的响应速度、吞吐量、TPS、QPS等指标需求,比如秒杀系统对响应速度和QPS的要求是非常高的。

了解系统相关软件的版本、模式和参数等,有时候限于应用依赖服务的版本、模式等,性能也会受到一定的影响。

性能分析

性能诊断一种是针对已经确定有性能问题的系统和代码进行诊断,还有一种是对预上线系统提前性能测试,确定性能是否符合上线要求。针对前者,性能诊断工具主要分为两层:OS 层面和 Java 应用层面(包括应用代码诊断和 GC 诊断),后者可以用各种性能压测工具(例如 JMeter)进行测试。

OS 诊断

OS 的诊断主要关注的是 CPU、Memory、I/O 三个方面。

CPU 诊断

当程序响应变慢的时候,首先使用top、vmstat、ps等命令查看系统的cpu使用率是否有异常,从而可以判断出是否是cpu繁忙造成的性能问题。其中,主要通过us(用户进程所占的%)这个数据来看异常的进程信息。当us接近100%甚至更高时,可以确定是cpu繁忙造成的响应缓慢。一般说来,cpu繁忙的原因有以下几个:

线程中有无限空循环、无阻塞、正则匹配或者单纯的计算

发生了频繁的gc

多线程的上下文切换

对于 CPU 主要关注平均负载(Load Average),CPU 使用率,上下文切换次数(Context Switch)。

通过 top 命令可以查看系统平均负载和 CPU 使用率,图为通过 top 命令查看某系统的状态。

top -H -p [pid]

top 命令示例

平均负载有三个数字:63.66,58.39,57.18,分别表示过去 1 分钟、5 分钟、15 分钟机器的负载。按照经验,若数值小于 0.7*CPU 个数,则系统工作正常;若超过这个值,甚至达到 CPU 核数的四五倍,则系统的负载就明显偏高。图中 15 分钟负载已经高达 57.18,1 分钟负载是 63.66(系统为 16 核),说明系统出现负载问题,且存在进一步升高趋势,需要定位具体原因了。

确定好cpu使用率最高的进程之后就可以使用jstack来打印出异常进程的堆栈信息:

jstack [pid]

jstack命令示例

接下来需要注意的一点是,Linux下所有线程最终还是以轻量级进程的形式存在系统中的,而使用jstack只能打印出进程的信息,这些信息里面包含了此进程下面所有线程(轻量级进程-LWP)的堆栈信息。因此,进一步的需要确定是哪一个线程耗费了大量cpu,此时可以使用top -p [processId]来查看,也可以直接通过ps -Le来显示所有进程,包括LWP的资源耗费信息。最后,通过在jstack的输出文件中查找对应的lwp的id即可以定位到相应的堆栈信息。其中需要注意的是线程的状态:RUNNABLE、WAITING等。对于Runnable的进程需要注意是否有耗费cpu的计算。对于Waiting的线程一般是锁的等待操作。

也可以使用jstat来查看对应进程的gc信息,以判断是否是gc造成了cpu繁忙。

jstat -gcutil [pid]

jstat命令示例

还可以通过vmstat,通过观察内核状态的上下文切换(cs)次数,来判断是否是上下文切换造成的cpu繁忙:

vmstat 1 5

vmstat 命令示例

上下文切换次数发生的场景主要有如下几种:1)时间片用完,CPU 正常调度下一个任务;2)被其它优先级更高的任务抢占;3)执行任务碰到 I/O 阻塞,挂起当前任务,切换到下一个任务;4)用户代码主动挂起当前任务让出 CPU;5)多任务抢占资源,由于没有抢到被挂起;6)硬件中断。Java 线程上下文切换主要来自共享资源的竞争。一般单个对象加锁很少成为系统瓶颈,除非锁粒度过大。但在一个访问频度高,对多个对象连续加锁的代码块中就可能出现大量上下文切换,成为系统瓶颈。

此外,有时候可能会由jit引起一些cpu飚高的情形,如大量方法编译等。这里可以使用-XX:+PrintCompilation这个参数输出jit编译情况,以排查jit编译引起的cpu问题。

内存诊断

从操作系统角度,内存关注应用进程是否足够,可以使用 free –m 命令查看内存的使用情况。通过 top 命令可以查看进程使用的虚拟内存 VIRT 和物理内存 RES,根据公式 VIRT = SWAP + RES 可以推算出具体应用使用的交换分区(Swap)情况,使用交换分区过大会影响 Java 应用性能,可以将 swappiness 值调到尽可能小。因为对于 Java 应用来说,占用太多交换分区可能会影响性能,毕竟磁盘性能比内存慢太多。

对Java应用来说,内存主要是由堆外内存和堆内内存组成。

堆外内存

堆外内存主要是JNI、Deflater/Inflater、DirectByteBuffer(nio中会用到)使用的。对于这种堆外内存的分析,还是需要先通过vmstat、sar、top、pidstat(这里的sar,pidstat以及iostat都是sysstat软件套件的一部分,需要单独安装)等查看swap和物理内存的消耗状况再做判断的。此外,对于JNI、Deflater这种调用可以通过Google-preftools来追踪资源使用状况。

堆内内存

此部分内存为Java应用主要的内存区域。通常与这部分内存性能相关的有:

创建的对象:这个是存储在堆中的,需要控制好对象的数量和大小,尤其是大的对象很容易进入老年代

全局集合:全局集合通常是生命周期比较长的,因此需要特别注意全局集合的使用

缓存:缓存选用的数据结构不同,会很大程序影响内存的大小和gc

ClassLoader:主要是动态加载类容易造成永久代内存不足

多线程:线程分配会占用本地内存,过多的线程也会造成内存不足

以上使用不当很容易造成:

频繁GC -> Stop the world,使你的应用响应变慢

OOM,直接造成内存溢出错误使得程序退出。OOM又可以分为以下几种:

Heap space:堆内存不足

PermGen space:永久代内存不足

Native thread:本地线程没有足够内存可分配

排查堆内存问题的常用工具是jmap,是jdk自带的。一些常用用法如下:

查看jvm内存使用状况:jmap -heap

查看jvm内存存活的对象:jmap -histo:live

把heap里所有对象都dump下来,无论对象是死是活:jmap -dump:format=b,file=xxx.hprof

先做一次full GC,再dump,只包含仍然存活的对象信息:jmap -dump:format=b,live,file=xxx.hprof

此外,不管是使用jmap还是在OOM时产生的dump文件,可以使用Eclipse的MAT(MEMORY ANALYZER TOOL)来分析,可以看到具体的堆栈和内存中对象的信息。当然jdk自带的jhat也能够查看dump文件(启动web端口供开发者使用浏览器浏览堆内对象的信息)。此外,VisualVM也能够打开hprof文件,使用它的heap walker查看堆内存信息。

I/O诊断

I/O 包括磁盘 I/O 和网络 I/O,一般情况下磁盘更容易出现 I/O 瓶颈。通过 iostat 可以查看磁盘的读写情况,通过 CPU 的 I/O wait 可以看出磁盘 I/O 是否正常。如果磁盘 I/O 一直处于很高的状态,说明磁盘太慢或故障,成为了性能瓶颈,需要进行应用优化或者磁盘更换。

文件IO

可以使用系统工具pidstat、iostat、vmstat来查看io的状况。这里可以看一张使用vmstat的结果图。


vmstat命令示例

这里主要注意bi和bo这两个值,分别表示块设备每秒接收的块数量和块设备每秒发送的块数量,由此可以判定io繁忙状况。进一步的可以通过使用strace工具定位对文件io的系统调用。通常,造成文件io性能差的原因不外乎:

大量的随机读写

设备慢

文件太大

网络IO

查看网络io状况,一般使用的是netstat工具。可以查看所有连接的状况、数目、端口信息等。例如:当time_wait或者close_wait连接过多时,会影响应用的相应速度。

netstat -anp

此外,还可以使用tcpdump来具体分析网络io的数据。当然,tcpdump出的文件直接打开是一堆二进制的数据,可以使用wireshark阅读具体的连接以及其中数据的内容。

tcpdump -i eth0 -w tmp.cap -tnn dst port 8080 #监听8080端口的网络请求并打印日志到tmp.cap中

还可以通过查看/proc/interrupts来获取当前系统使用的中断的情况。

cat /proc/interrupts

各个列依次是:

irq的序号, 在各自cpu上发生中断的次数,可编程中断控制器,设备名称(request_irq的dev_name字段)

通过查看网卡设备的终端情况可以判断网络io的状况。

除了常用的 top、 ps、vmstat、iostat 等命令,还有其他 Linux 工具可以诊断系统问题,如 mpstat、tcpdump、netstat、pidstat、sar 等。Brendan 总结列出了 Linux 不同设备类型的性能诊断工具,如图所示,可供参考。


Linux 性能观测工具

Java 应用诊断工具

应用代码诊断

应用代码性能问题是相对好解决的一类性能问题。通过一些应用层面监控报警,如果确定有问题的功能和代码,直接通过代码就可以定位;或者通过 top+jstack,找出有问题的线程栈,定位到问题线程的代码上,也可以发现问题。对于更复杂,逻辑更多的代码段,通过 Stopwatch 打印性能日志往往也可以定位大多数应用代码性能问题。

常用的 Java 应用诊断包括线程、堆栈、GC 等方面的诊断。

jstack

jstack 命令通常配合 top 使用,通过 top -H -p pid 定位 Java 进程和线程,再利用 jstack -l pid 导出线程栈。由于线程栈是瞬态的,因此需要多次 dump,一般 3 次 dump,一般每次隔 5s 就行。将 top 定位的 Java 线程 pid 转成 16 进制,得到 Java 线程栈中的 nid,可以找到对应的问题线程栈。

通过 top –H -p 查看运行时间较长 Java 线程

如上图所示,其中的线程 24985 运行时间较长,可能存在问题,转成 16 进制后,通过 Java 线程栈找到对应线程 0x6199 的栈如下,从而定位问题点,如下图所示。

jstack 查看线程堆栈

JProfiler

JProfiler 可对 CPU、堆、内存进行分析,功能强大,如下图所示。同时结合压测工具,可以对代码耗时采样统计。

通过 JProfiler 进行内存分析

GC 诊断

Java GC 解决了程序员管理内存的风险,但 GC 引起的应用暂停成了另一个需要解决的问题。JDK 提供了一系列工具来定位 GC 问题,比较常用的有 jstat、jmap,还有第三方工具 MAT 等。

jstat

jstat 命令可打印 GC 详细信息,Young GC 和 Full GC 次数,堆信息等。其命令格式为

jstat –gcxxx -t pid ,如下图所示。

jstat 命令示例

jmap

jmap 打印 Java 进程堆信息 jmap –heap pid。通过 jmap –dump:file=xxx pid 可 dump 堆到文件,然后通过其它工具进一步分析其堆使用情况

MAT

MAT 是 Java 堆的分析利器,提供了直观的诊断报告,内置的 OQL 允许对堆进行类 SQL 查询,功能强大,outgoing reference 和 incoming reference 可以对对象引用追根溯源。


MAT 示例

上图是 MAT 使用示例,MAT 有两列显示对象大小,分别是 Shallow size 和 Retained size,前者表示对象本身占用内存的大小,不包含其引用的对象,后者是对象自己及其直接或间接引用的对象的 Shallow size 之和,即该对象被回收后 GC 释放的内存大小,一般说来关注后者大小即可。对于有些大堆 (几十 G) 的 Java 应用,需要较大内存才能打开 MAT。通常本地开发机内存过小,是无法打开的,建议在线下服务器端安装图形环境和 MAT,远程打开查看。或者执行 mat 命令生成堆索引,拷贝索引到本地,不过这种方式看到的堆信息有限。

为了诊断 GC 问题,建议在 JVM 参数中加上-XX:+PrintGCDateStamps。常用的 GC 参数如下图所示。

常用 GC 参数

对于 Java 应用,通过 top+jstack+jmap+MAT 可以定位大多数应用和内存问题,可谓必备工具。有些时候,Java 应用诊断需要参考 OS 相关信息,可使用一些更全面的诊断工具,比如 Zabbix(整合了 OS 和 JVM 监控)等。在分布式环境中,分布式跟踪系统等基础设施也对应用性能诊断提供了有力支持。

其他分析工具

上面分别针对CPU、内存以及IO讲了一些系统/JDK自带的分析工具。除此之外,还有一些综合分析工具或者框架可以更加方便我们对Java应用性能的排查、分析、定位等。

VisualVM

这个工具应该是Java开发者们非常熟悉的一款java应用监测工具,原理是通过jmx接口来连接jvm进程,从而能够看到jvm上的线程、内存、类等信息。

Java Mission Control(jmc)

此工具是jdk7 u40开始自带的,原来是JRockit上的工具,是一款采样型的集诊断、分析和监控与一体的非常强大的工具:https://docs.oracle.com/javacomponents/jmc-5-5/jmc-user-guide/toc.htm。但是此工具是基于JFR(jcmdJFR.start name=test duration=60s settings=template.jfc filename=output.jfr)的,而开启JFR需要商业证书:jcmdVM.unlock_commercial_features。

Btrace

这里不得不提的是btrace这个神器,它使用java attach api+ java agent + instrument api能够实现jvm的动态追踪。在不重启应用的情况下可以加入拦截类的方法以打印日志等。具体的用法可以参考Btrace入门到熟练小工完全指南

Jwebap

Jwebap是一款JavaEE性能检测框架,基于asm增强字节码实现。支持:http请求、jdbc连接、method的调用轨迹跟踪以及次数、耗时的统计。由此可以获取最耗时的请求、方法,并可以查看jdbc连接的次数、是否关闭等。但此项目是2006年的一个项目,已经将近10年没有更新。根据笔者使用,已经不支持jdk7编译的应用。如果要使用,建议基于原项目二次开发,同时也可以加入对redis连接的轨迹跟踪。当然,基于字节码增强的原理,也可以实现自己的JavaEE性能监测框架。

性能调优

与性能分析相对应,性能调优同样分为三部分。

CPU调优

不要存在一直运行的线程(无限while循环),可以使用sleep休眠一段时间。这种情况普遍存在于一些pull方式消费数据的场景下,当一次pull没有拿到数据的时候建议sleep一下,再做下一次pull。

轮询的时候可以使用wait/notify机制

避免循环、正则表达式匹配、计算过多,包括使用String的format、split、replace方法(可以使用apache的commons-lang里的StringUtils对应的方法),使用正则去判断邮箱格式(有时候会造成死循环)、序列/反序列化等。

结合jvm和代码,避免产生频繁的gc,尤其是full GC。

此外,使用多线程的时候,还需要注意以下几点:

使用线程池,减少线程数以及线程的切换

多线程对于锁的竞争可以考虑减小锁的粒度(使用ReetrantLock)、拆分锁(类似ConcurrentHashMap分bucket上锁), 或者使用CAS、ThreadLocal、不可变对象等无锁技术。此外,多线程代码的编写最好使用jdk提供的并发包、Executors框架以及ForkJoin等,此外DiscuptorActor在合适的场景也可以使用。

内存调优

内存的调优主要就是对jvm的调优。

合理设置各个代的大小。避免新生代设置过小(不够用,经常minor gc并进入老年代)以及过大(会产生碎片),同样也要避免Survivor设置过大和过小。

选择合适的GC策略。需要根据不同的场景选择合适的gc策略。这里需要说的是,cms并非全能的。除非特别需要再设置,毕竟cms的新生代回收策略parnew并非最快的,且cms会产生碎片。此外,G1直到jdk8的出现也并没有得到广泛应用,并不建议使用。

jvm启动参数配置-XX:+PrintGCDetails -XX:+PrintGCDateStamps -Xloggc:[log_path],以记录gc日志,便于排查问题。

其中,对于第一点,具体的还有一点建议:

年轻代大小选择:响应时间优先的应用,尽可能设大,直到接近系统的最低响应时间限制(根据实际情况选择)。在此种情况下,年轻代收集发生gc的频率是最小的。同时,也能够减少到达年老代的对象。吞吐量优先的应用,也尽可能的设置大,因为对响应时间没有要求,垃圾收集可以并行进行,建议适合8CPU以上的应用使用。

年老代大小选择:响应时间优先的应用,年老代一般都是使用并发收集器,所以其大小需要小心设置,一般要考虑并发会话率和会话持续时间等一些参数。如果堆设置小了,会造成内存碎片、高回收频率以及应用暂停而使用传统的标记清除方式;如果堆大了,则需要较长的收集时间。最优化的方案,一般需要参考以下数据获得:

并发垃圾收集信息

持久代并发收集次数

传统GC信息

花在年轻代和年老代回收上的时间比例

一般吞吐量优先的应用都应该有一个很大的年轻代和一个较小的年老代。这样可以尽可能回收掉大部分短期对象,减少中期的对象,而年老代存放长期存活对象。

此外,较小堆引起的碎片问题:因为年老代的并发收集器使用标记、清除算法,所以不会对堆进行压缩。当收集器回收时,会把相邻的空间进行合并,这样可以分配给较大的对象。但是,当堆空间较小时,运行一段时间以后,就会出现“碎片”,如果并发收集器找不到足够的空间,那么并发收集器将会停止,然后使用传统的标记、清除方式进行回收。如果出现“碎片”,可能需要进行如下配置:-XX:+UseCMSCompactAtFullCollection,使用并发收集器时,开启对年老代的压缩。同时使用-XX:CMSFullGCsBeforeCompaction=xx设置多少次Full GC后,对年老代进行压缩。

其余对于jvm的优化问题可见后面JVM参数进阶一节。

代码上,也需要注意:

避免保存重复的String对象,同时也需要小心String.subString()与String.intern()的使用,尤其是后者其底层数据结构为StringTable,当字符串大量不重复时,会使得StringTable非常大(一个固定大小的hashmap,可以由参数-XX:StringTableSize=N设置大小),从而影响young gc的速度。在jackson和fastjson中使用了此方法,某些场景下会引起gc问题:YGC越来越慢,为什么

尽量不要使用finalizer

释放不必要的引用:ThreadLocal使用完记得释放以防止内存泄漏,各种stream使用完也记得close。

使用对象池避免无节制创建对象,造成频繁gc。但不要随便使用对象池,除非像连接池、线程池这种初始化/创建资源消耗较大的场景,

缓存失效算法,可以考虑使用SoftReference、WeakReference保存缓存对象

谨慎热部署/加载的使用,尤其是动态加载类等

不要用Log4j输出文件名、行号,因为Log4j通过打印线程堆栈实现,生成大量String。此外,使用log4j时,建议此种经典用法,先判断对应级别的日志是否打开,再做操作,否则也会生成大量String。

if (logger.isInfoEnabled()) {

logger.info(msg);

}

IO调优

文件IO上需要注意:

考虑使用异步写入代替同步写入,可以借鉴redis的aof机制。

利用缓存,减少随机读

尽量批量写入,减少io次数和寻址

使用数据库代替文件存储

网络IO上需要注意:

和文件IO类似,使用异步IO、多路复用IO/事件驱动IO代替同步阻塞IO

批量进行网络IO,减少IO次数

使用缓存,减少对网络数据的读取

使用协程:Quasar

其他优化建议

算法、逻辑上是程序性能的首要,遇到性能问题,应该首先优化程序的逻辑处理

优先考虑使用返回值而不是异常表示错误

查看自己的代码是否对内联是友好的:你的Java代码对JIT编译友好么?

此外,jdk7、8在jvm的性能上做了一些增强:

通过-XX:+TieredCompilation开启JDK7的多层编译(tiered compilation)支持。多层编译结合了客户端C1编译器和服务端C2编译器的优点(客户端编译能够快速启动和及时优化,服务器端编译可以提供更多的高级优化),是一个非常高效利用资源的切面方案。在开始时先进行低层次的编译,同时收集信息,在后期再进一步进行高层次的编译进行高级优化。需要注意的一点:这个参数会消耗比较多的内存资源,因为同一个方法被编译了多次,存在多份native内存拷贝,建议把code cache调大一点儿(-XX:+ReservedCodeCacheSize,InitialCodeCacheSize)。否则有可能由于code cache不足,jit编译的时候不停的尝试清理code cache,丢弃无用方法,消耗大量资源在jit线程上。

Compressed Oops:压缩指针在jdk7中的server模式下已经默认开启。

Zero-Based Compressed Ordinary Object Pointers:当使用了上述的压缩指针时,在64位jvm上,会要求操作系统保留从一个虚拟地址0开始的内存。如果操作系统支持这种请求,那么就开启了Zero-Based Compressed Oops。这样可以使得无须在java堆的基地址添加任何地址补充即可把一个32位对象的偏移解码成64位指针。

逃逸分析(Escape Analysis): Server模式的编译器会根据代码的情况,来判断相关对象的逃逸类型,从而决定是否在堆中分配空间,是否进行标量替换(在栈上分配原子类型局部变量)。此外,也可以根据调用情况来决定是否自动消除同步控制,如StringBuffer。这个特性从Java SE 6u23开始就默认开启。

NUMA Collector Enhancements:这个重要针对的是The Parallel Scavenger垃圾回收器。使其能够利用NUMA (Non Uniform Memory Access,即每一个处理器核心都有本地内存,能够低延迟、高带宽访问) 架构的机器的优势来更快的进行gc。可以通过-XX:+UseNUMA开启支持。

此外,网上还有很多过时的建议,不要再盲目跟随:

变量用完设置为null,加快内存回收,这种用法大部分情况下并没有意义。一种情况除外:如果有个Java方法没有被JIT编译但里面仍然有代码会执行比较长时间,那么在那段会执行长时间的代码前显式将不需要的引用类型局部变量置null是可取的。具体的可以见R大的解释:https://www.zhihu.com/question/48059457/answer/113538171

方法参数设置为final,这种用法也没有太大的意义,尤其在jdk8中引入了effective final,会自动识别final变量。

JVM内存调优Tips

如何将新对象预留在年轻代

众所周知,由于 Full GC 的成本远远高于 Minor GC,因此某些情况下需要尽可能将对象分配在年轻代,这在很多情况下是一个明智的选择。虽然在大部分情况下,JVM 会尝试在 Eden 区分配对象,但是由于空间紧张等问题,很可能不得不将部分年轻对象提前向年老代压缩。因此,在 JVM 参数调优时可以为应用程序分配一个合理的年轻代空间,以最大限度避免新对象直接进入年老代的情况发生。

分配足够大的年轻代空间,使用 JVM 参数-XX:+PrintGCDetails -Xmx20M -Xms20M-Xmn6M

如何让大对象进入年老代

我们在大部分情况下都会选择将对象分配在年轻代。但是,对于占用内存较多的大对象而言,它的选择可能就不是这样的。因为大对象出现在年轻代很可能扰乱年轻代 GC,并破坏年轻代原有的对象结构。因为尝试在年轻代分配大对象,很可能导致空间不足,为了有足够的空间容纳大对象,JVM 不得不将年轻代中的年轻对象挪到年老代。因为大对象占用空间多,所以可能需要移动大量小的年轻对象进入年老代,这对 GC 相当不利。基于以上原因,可以将大对象直接分配到年老代,保持年轻代对象结构的完整性,这样可以提高 GC 的效率。如果一个大对象同时又是一个短命的对象,假设这种情况出现很频繁,那对于 GC 来说会是一场灾难。原本应该用于存放永久对象的年老代,被短命的对象塞满,这也意味着对堆空间进行了洗牌,扰乱了分代内存回收的基本思路。因此,在软件开发过程中,应该尽可能避免使用短命的大对象。

可以使用参数-XX:PetenureSizeThreshold 设置大对象直接进入年老代的阈值。当对象的大小超过这个值时,将直接在年老代分配。参数-XX:PetenureSizeThreshold 只对串行收集器和年轻代并行收集器有效,并行回收收集器不识别这个参数。

如何设置对象进入年老代的年龄

堆中的每一个对象都有自己的年龄。一般情况下,年轻对象存放在年轻代,年老对象存放在年老代。为了做到这点,虚拟机为每个对象都维护一个年龄。如果对象在 Eden 区,经过一次 GC 后依然存活,则被移动到 Survivor 区中,对象年龄加 1。以后,如果对象每经过一次 GC 依然存活,则年龄再加 1。当对象年龄达到阈值时,就移入年老代,成为老年对象。这个阈值的最大值可以通过参数-XX:MaxTenuringThreshold 来设置,默认值是 15。虽然-XX:MaxTenuringThreshold 的值可能是 15 或者更大,但这不意味着新对象非要达到这个年龄才能进入年老代。事实上,对象实际进入年老代的年龄是虚拟机在运行时根据内存使用情况动态计算的,这个参数指定的是阈值年龄的最大值。即,实际晋升年老代年龄等于动态计算所得的年龄与-XX:MaxTenuringThreshold 中较小的那个。

参数为-XX:+PrintGCDetails -Xmx20M -Xms20M -Xmn10M -XX:SurvivorRatio=2 -XX:MaxTenuringThreshold=1

稳定的 Java 堆 VS 动荡的 Java 堆

一般来说,稳定的堆大小对垃圾回收是有利的。获得一个稳定的堆大小的方法是使-Xms 和-Xmx 的大小一致,即最大堆和最小堆 (初始堆) 一样。如果这样设置,系统在运行时堆大小理论上是恒定的,稳定的堆空间可以减少 GC 的次数。因此,很多服务端应用都会将最大堆和最小堆设置为相同的数值。但是,一个不稳定的堆并非毫无用处。稳定的堆大小虽然可以减少 GC 次数,但同时也增加了每次 GC 的时间。让堆大小在一个区间中震荡,在系统不需要使用大内存时,压缩堆空间,使 GC 应对一个较小的堆,可以加快单次 GC 的速度。基于这样的考虑,JVM 还提供了两个参数用于压缩和扩展堆空间。

-XX:MinHeapFreeRatio 参数用来设置堆空间最小空闲比例,默认值是 40。当堆空间的空闲内存小于这个数值时,JVM 便会扩展堆空间。

-XX:MaxHeapFreeRatio 参数用来设置堆空间最大空闲比例,默认值是 70。当堆空间的空闲内存大于这个数值时,便会压缩堆空间,得到一个较小的堆。

当-Xmx 和-Xms 相等时,-XX:MinHeapFreeRatio 和-XX:MaxHeapFreeRatio 两个参数无效。

增大吞吐量提升系统性能

吞吐量优先的方案将会尽可能减少系统执行垃圾回收的总时间,故可以考虑关注系统吞吐量的并行回收收集器。在拥有高性能的计算机上,进行吞吐量优先优化,可以使用参数:

java –Xmx3800m –Xms3800m –Xmn2G –Xss128k –XX:+UseParallelGC

–XX:ParallelGC-Threads=20 –XX:+UseParallelOldGC

–Xmx380m –Xms3800m:设置 Java 堆的最大值和初始值。一般情况下,为了避免堆内存的频繁震荡,导致系统性能下降,我们的做法是设置最大堆等于最小堆。假设这里把最小堆减少为最大堆的一半,即 1900m,那么 JVM 会尽可能在 1900MB 堆空间中运行,如果这样,发生 GC 的可能性就会比较高;

-Xss128k:减少线程栈的大小,这样可以使剩余的系统内存支持更多的线程;

-Xmn2g:设置年轻代区域大小为 2GB;

–XX:+UseParallelGC:年轻代使用并行垃圾回收收集器。这是一个关注吞吐量的收集器,可以尽可能地减少 GC 时间。

–XX:ParallelGC-Threads:设置用于垃圾回收的线程数,通常情况下,可以设置和 CPU 数量相等。但在 CPU 数量比较多的情况下,设置相对较小的数值也是合理的;

–XX:+UseParallelOldGC:设置年老代使用并行回收收集器。

尝试使用大的内存分页

CPU 是通过寻址来访问内存的。32 位 CPU 的寻址宽度是 0~0xFFFFFFFF ,计算后得到的大小是 4G,也就是说可支持的物理内存最大是 4G。但在实践过程中,碰到了这样的问题,程序需要使用 4G 内存,而可用物理内存小于 4G,导致程序不得不降低内存占用。为了解决此类问题,现代 CPU 引入了 MMU(Memory Management Unit 内存管理单元)。MMU 的核心思想是利用虚拟地址替代物理地址,即 CPU 寻址时使用虚址,由 MMU 负责将虚址映射为物理地址。MMU 的引入,解决了对物理内存的限制,对程序来说,就像自己在使用 4G 内存一样。内存分页 (Paging) 是在使用 MMU 的基础上,提出的一种内存管理机制。它将虚拟地址和物理地址按固定大小(4K)分割成页 (page) 和页帧 (page frame),并保证页与页帧的大小相同。这种机制,从数据结构上,保证了访问内存的高效,并使 OS 能支持非连续性的内存分配。在程序内存不够用时,还可以将不常用的物理内存页转移到其他存储设备上,比如磁盘,这就是大家耳熟能详的虚拟内存。

在 Solaris 系统中,JVM 可以支持 Large Page Size 的使用。使用大的内存分页可以增强 CPU 的内存寻址能力,从而提升系统的性能。

java –Xmx2506m –Xms2506m –Xmn1536m –Xss128k –XX:++UseParallelGC

–XX:ParallelGCThreads=20 –XX:+UseParallelOldGC –XX:+LargePageSizeInBytes=256m

–XX:+LargePageSizeInBytes:设置大页的大小。

过大的内存分页会导致 JVM 在计算 Heap 内部分区(perm, new, old)内存占用比例时,会出现超出正常值的划分,最坏情况下某个区会多占用一个页的大小。

使用非占有的垃圾回收器

为降低应用软件的垃圾回收时的停顿,首先考虑的是使用关注系统停顿的 CMS 回收器,其次,为了减少 Full GC 次数,应尽可能将对象预留在年轻代,因为年轻代 Minor GC 的成本远远小于年老代的 Full GC。

java –Xmx3550m –Xms3550m –Xmn2g –Xss128k –XX:ParallelGCThreads=20

–XX:+UseConcMarkSweepGC –XX:+UseParNewGC –XX:+SurvivorRatio=8 –XX:TargetSurvivorRatio=90

–XX:MaxTenuringThreshold=31

–XX:ParallelGCThreads=20:设置 20 个线程进行垃圾回收;

–XX:+UseParNewGC:年轻代使用并行回收器;

–XX:+UseConcMarkSweepGC:年老代使用 CMS 收集器降低停顿;

–XX:+SurvivorRatio:设置 Eden 区和 Survivor 区的比例为 8:1。稍大的 Survivor 空间可以提高在年轻代回收生命周期较短的对象的可能性,如果 Survivor 不够大,一些短命的对象可能直接进入年老代,这对系统来说是不利的。

–XX:TargetSurvivorRatio=90:设置 Survivor 区的可使用率。这里设置为 90%,则允许 90%的 Survivor 空间被使用。默认值是 50%。故该设置提高了 Survivor 区的使用率。当存放的对象超过这个百分比,则对象会向年老代压缩。因此,这个选项更有助于将对象留在年轻代。

–XX:MaxTenuringThreshold:设置年轻对象晋升到年老代的年龄。默认值是 15 次,即对象经过 15 次 Minor GC 依然存活,则进入年老代。这里设置为 31,目的是让对象尽可能地保存在年轻代区域。

总结与建议

性能调优同样遵循 2-8 原则,80%的性能问题是由 20%的代码产生的,因此优化关键代码事半功倍。同时,对性能的优化要做到按需优化,过度优化可能引入更多问题。对于 Java 性能优化,不仅要理解系统架构、应用代码,同样需要关注 JVM 层甚至操作系统底层。总结起来主要可以从以下几点进行考虑:

1)基础性能的调优

这里的基础性能指的是硬件层级或者操作系统层级的升级优化,比如网络调优,操作系统版本升级,硬件设备优化等。比如 F5 的使用和 SDD 硬盘的引入,包括新版本 Linux 在 NIO 方面的升级,都可以极大的促进应用的性能提升;

2)数据库性能优化

包括常见的事务拆分,索引调优,SQL 优化,NoSQL 引入等,比如在事务拆分时引入异步化处理,最终达到一致性等做法的引入,包括在针对具体场景引入的各类 NoSQL 数据库,都可以大大缓解传统数据库在高并发下的不足;

3)应用架构优化

引入一些新的计算或者存储框架,利用新特性解决原有集群计算性能瓶颈等;或者引入分布式策略,在计算和存储进行水平化,包括提前计算预处理等,利用典型的空间换时间的做法等;都可以在一定程度上降低系统负载;

4)业务层面的优化

技术并不是提升系统性能的唯一手段,在很多出现性能问题的场景中,其实可以看到很大一部分都是因为特殊的业务场景引起的,如果能在业务上进行规避或者调整,其实往往是最有效的。

参考

Java 应用性能调优实践

JVM 优化经验总结

Java调优经验谈

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 212,080评论 6 493
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,422评论 3 385
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 157,630评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,554评论 1 284
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,662评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,856评论 1 290
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,014评论 3 408
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,752评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,212评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,541评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,687评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,347评论 4 331
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,973评论 3 315
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,777评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,006评论 1 266
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,406评论 2 360
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,576评论 2 349

推荐阅读更多精彩内容