m基于LMMSE+turbo算法的信道估计均衡器误码率仿真,对比LS,DEF以及LMMSE三种均衡算法误码率

1.算法描述

本文推导了符号间干扰(ISI)信道的矢量形状因子图表示。结果图具有树形结构,避免了现有图方法中的短周期问题。基于联合高斯近似,我们在LLR(对数似然比)之间建立了联系由二进制输入和LMMSE(线性最小均方误差)驱动的线性系统的估计器高斯输入驱动的线性系统的估计器。此连接有助于应用最近提出的ISI信道无周期图高斯消息传递技术。


LMMSE+Turbo主要原理见如下文献:


从参考文献中的内容可知,整个系统大概的结构如下所示:



所以,我们按这个结构进行编程设计。


LMMSE:


首先将MMSE计算公式中的XHX用其均值来代替,即




为什么用均值来代替即时值能降低计算复杂度?这需要分析XHX里面的数据是什么,它是一个MM的矩阵,其对角线上是已知数据(导频信号)的功率,而其他位置的数据则是已知数据与其自身延迟数据的相关,该相关值可近似为满足标准正态分布的信号(均值为0)。那么对应到E(XHX),其对角线上的数据就是已知数据的平均功率,而其他位置的数据则为0。因此通过这种替代,可将hmmse进一步做如下化简



其中SNR为接收信号的信噪比,而β则是与调制方式有关的一个常数。


TURBO:


turbo Codes译码是一类具有反馈结构的伪随机译码器,2个码可以交替互不影响的译码,并且还可以通过关于系统码信息位的软判决输出相互传递信息,进行递推式迭代译码。Turbo译码结构如图1所示:



Turbo码的译码算法主要分为两大类:一类是基于最大后验概率(Maximum A Posteriori,MAP)软输出算法,这类算法由标准MAP算法演化得来。对标准MAP算法取对数得到Log-MAP算法,对Log-MAP算法中的分支度量进行简化,得到MAX-Log-MAP算法。另一类是基于Viterbi算法的软输出算法,是对卷积码的译码算法Viterbi的改进,使其满足SISO特性,软信息可以在两个分量译码器之间交换。这种改进的Viterbi算法为软输出Viterbi算法(SOVA)。


2.仿真效果预览

matlab2022a仿真结果如下:




3.MATLAB核心程序

for j=1:length(SNR_in_dB)

%通过既有码间干扰又有白噪声信道

for jj = 1:1000

j

jj

info      = [ones(1,2048),func_random_binary(N)];%产生二进制信号序列

%Encoder

info2 = [];

for ii = 1:(N+2048)/length(Interleaver)

tmps  = info(length(Interleaver)*(ii-1)+1:length(Interleaver)*ii);

info2 = [info2,tmps(Interleaver)];%交织

end

%turbo编码

turbo_code = [func_turbo_encode_map(logical((info2+1)/2)),zeros(1,10000)];%82954,76810=6144

%多径噪声信道

[y,len,h]  = func_channel(2*turbo_code-1,SNR_in_dB(j));

if j==1

info4 = zeros(size(info));

end

%LMMSE均衡

z          = func_LMMSE_eq(y,h,SNR_in_dB(j),info4);

decis      = [2*[z>=0]-1]';

%获得均衡后数据

XX         = [decis(6:82953+5)];


%demap_decode,译码

output= 2*func_turbo_decode_demap(XX,ITER)-1;%82953


%解交织

info3 = [];

for ii = 1:(N+2048)/length(De_Interleaver)

tmps2  = output(length(De_Interleaver)*(ii-1)+1:length(De_Interleaver)*ii);

info3 = [info3,tmps2(De_Interleaver)];%交织

end


%反馈,交织

info4 = [];

for ii = 1:(N+2048)/length(Interleaver)

tmps3 = info3(length(Interleaver)*(ii-1)+1:length(Interleaver)*ii);

info4 = [info4,tmps3(Interleaver)];%交织

end


%初始误码统计数

NumErr1 = sum(info(1:27499)~=info3(1:27499));

if NumErr1 == 0%无法统计到误码率

NumErr1 = 1;

end


Pe4(j,jj)  = NumErr1/N;

end

end;  

01-142m

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 216,324评论 6 498
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,356评论 3 392
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 162,328评论 0 353
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,147评论 1 292
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,160评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,115评论 1 296
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,025评论 3 417
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,867评论 0 274
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,307评论 1 310
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,528评论 2 332
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,688评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,409评论 5 343
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,001评论 3 325
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,657评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,811评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,685评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,573评论 2 353

推荐阅读更多精彩内容