深度学习笔记 - 102 - 回归模型

image.png

配置环境

# 选择 Python 2 版本
conda create -n python2 python=2

# 安装 pandas, matplotlib, scikit-learn
conda install pandas matplotlib scikit-learn

Linear Regression:根据动物的大脑重量来预测对应体重

import pandas as pd
from sklearn import linear_model
import matplotlib.pyplot as plt

# Read data
dataframe = pd.read_fwf('brain_body.txt')
x_values = dataframe[['Brain']]
y_values = dataframe[['Body']]

# Train model on data
body_reg = linear_model.LinearRegression()
body_reg.fit(x_values, y_values)

# Visualize results
plt.scatter(x_values, y_values)
plt.plot(x_values, body_reg.predict(x_values))
plt.show()

Breaking it Down

  1. Machine Learing - Defining the outcome & letting our algorithm learn the steps to get there

  2. 3 Learning styles - supervised, unsupervised & reinforcement learning

  3. Linear Regression models relationship between independent & dependent variables via line of best fit

线性回归练习:各国男性人口的 BMI 与该国人口平均寿命的回归

其中 "Country" 列记录出生国家,"Life expectancy" 列记录该国平均寿命,"BMI" 列记录该国男性 BMI 数据。你将使用 BMI 数据来预测平均寿命。

# Import statements
import pandas as pd
from sklearn.linear_model import LinearRegression

# Load the data
bmi_life_data = pd.read_csv("bmi_and_life_expectancy.csv")

# Make and fit the linear regression model

bmi_life_model = LinearRegression()
bmi_life_model.fit(bmi_life_data[['BMI']], bmi_life_data[['Life expectancy']])

# Mak a prediction using the model
laos_life_exp = bmi_life_model.predict(21.07931)

线性回归注意事项

最适用于线性数据
线性回归会根据训练数据生成直线模型。如果训练数据包含非线性关系,你需要选择:调整数据(进行数据转换)、增加特征数量(参考下节内容)或改用其他模型。

image.png

容易受到异常值影响
线性回归的目标是求取对训练数据而言的 “最优拟合” 直线。如果数据集中存在不符合总体规律的异常值,最终结果将会存在不小偏差。

image.png

多元线性回归

使用到波士顿房价数据集。数据集中包含 506 栋房屋的 13 个特征与房价中值(单位为 1000 美元)。你将根据这 13 个特征拟合模型,并预测房价。

from sklearn.linear_model import LinearRegression
from sklearn.datasets import load_boston

# Load the data from the the boston house-prices dataset 
boston_data = load_boston()
x = boston_data['data']
y = boston_data['target']

# Make and fit the linear regression model
model = LinearRegression()
model.fit(x, y)

# Make a prediction using the model
sample_house = [[2.29690000e-01, 0.00000000e+00, 1.05900000e+01, 0.00000000e+00, 4.89000000e-01,
                6.32600000e+00, 5.25000000e+01, 4.35490000e+00, 4.00000000e+00, 2.77000000e+02,
                1.86000000e+01, 3.94870000e+02, 1.09700000e+01]]

prediction = model.predict(sample_house)
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 219,366评论 6 508
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 93,521评论 3 395
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 165,689评论 0 356
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,925评论 1 295
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,942评论 6 392
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,727评论 1 305
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,447评论 3 420
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 39,349评论 0 276
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,820评论 1 317
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,990评论 3 337
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 40,127评论 1 351
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,812评论 5 346
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,471评论 3 331
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 32,017评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 33,142评论 1 272
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 48,388评论 3 373
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 45,066评论 2 355

推荐阅读更多精彩内容