CRF条件随机场

线性链条件随机场

DEFINITION

p(\mathbf{y} | \mathbf{x})=\frac{1}{Z(\mathbf{x})} \prod_{t=1}^{T} \exp \left\{\sum_{k=1}^{K} \theta_{k} f_{k}\left(y_{t}, y_{t-1}, \mathbf{x}_{t}\right)\right\}
Z(\mathbf{x})=\sum_{\mathbf{y}} \prod_{t=1}^{T} \exp \left\{\sum_{k=1}^{K} \theta_{k} f_{k}\left(y_{t}, y_{t-1}, \mathbf{x}_{t}\right)\right\}

ESTIMATION

损失函数为
\ell(\theta)=\sum_{i=1}^{N} \log p\left(\mathbf{y}^{(i)} | \mathbf{x}^{(i)} ; \theta\right)
\ell(\theta)=\sum_{i=1}^{N} \sum_{t=1}^{T} \sum_{k=1}^{K} \theta_{k} f_{k}\left(y_{t}^{(i)}, y_{t-1}^{(i)}, \mathbf{x}_{t}^{(i)}\right)-\sum_{i=1}^{N} \log Z\left(\mathbf{x}^{(i)}\right)
\theta_k求导结果为
\begin{aligned} \frac{\partial \ell}{\partial \theta_{k}}=& \sum_{i=1}^{N} \sum_{t=1}^{T} f_{k}\left(y_{t}^{(i)}, y_{t-1}^{(i)}, \mathbf{x}_{t}^{(i)}\right) \\ &-\sum_{i=1}^{N} \sum_{t=1}^{T} \sum_{y, y^{\prime}} f_{k}\left(y, y^{\prime}, \mathbf{x}_{t}^{(i)}\right) p\left(y, y^{\prime} | \mathbf{x}^{(i)}\right)\end{aligned}
关注一下p\left(y, y^{\prime} | \mathbf{x}^{(i)}\right)是怎么得来的:
\begin{aligned} \frac{\partial \log Z\left(\mathbf{x}^{(i)}\right)}{\partial \theta_{k}} &= \frac {1}{Z\left(\mathbf{x}^{(i)}\right)} \sum_{\mathbf{y}} \frac{\partial \left\{ \prod_{t=1}^{T} \exp \left\{\sum_{k=1}^{K} \theta_{k} f_{k}\left(y_{t}, y_{t-1}, \mathbf{x}_{t}\right)\right\} \right\} } {\partial \theta_k} \\ &=\frac {1}{Z\left(\mathbf{x}^{(i)}\right)} \sum_{\mathbf{y}} \left\{ \prod_{t=1}^{T} \exp \left\{\sum_{k=1}^{K} \theta_{k} f_{k}\left(y_{t}, y_{t-1}, \mathbf{x}_{t}\right)\right\} * \sum_{t=1}^{T} f_{k}\left(y_{t}, y_{t-1}, \mathbf{x}_{t}\right) \right\} \\ &= \sum_{\mathbf{y}} \left\{ p\left( \mathbf{y} | \mathbf{x}^{(i)}\right) * \sum_{t=1}^{T} f_{k}\left(y_t, y_{t-1}, \mathbf{x}_{t}^{(i)}\right) \right\} \\ &= \sum_{t=1}^{T} \sum_{y, y^{\prime}} f_{k}\left(y, y^{\prime}, \mathbf{x}_{t}^{(i)}\right) p\left(y, y^{\prime} | \mathbf{x}^{(i)}\right) \end{aligned}
解释:
从第一行到第二行可以将累乘符号转换为exp中的累加即得。
从第三行到第四行是将中括号内部的求和符号放在外面去。然后进行边缘概率的计算。

理解清楚这里就可以利用prml里面的sum-product algorithm来进行优化求导。

©著作权归作者所有,转载或内容合作请联系作者
平台声明:文章内容(如有图片或视频亦包括在内)由作者上传并发布,文章内容仅代表作者本人观点,简书系信息发布平台,仅提供信息存储服务。

推荐阅读更多精彩内容