点云拼接

一、前言

本文内容源自高翔博士新书《视觉SLAM十四讲》第5章相机与图像的实践环节。如果对SLAM感兴趣,强烈建议入手这本书。读这本书要比看网上这些胡乱拼凑的博客(包括本文)好得多。

二、什么是点云?

顾名思义,点云就是一大堆点放在一起,就像一朵云彩一样。所以说点云拼接是个挺有艺术感的事儿。

譬如说,我拿着RGB-D相机拍了一组照片。与普通相机不同的是,这些照片中的每个像素既有颜色又有深度。这深度值的作用可是非同小可,我们可以根据每个照片的拍摄角度和拍摄位置把这些照片组合起来,形成三维的立体图案。以下图所示的五张图片为例,它们是分别从不同角度拍摄的同一个房间。

Paste_Image.png

接下来,通过点云拼接,我们就可以还原这个房间的三维场景。

三、预备工具

四、开始写代码

Step1:读取RGB图片和深度图片,以及相机位姿数据。

在本例程中,相机位姿数据是已知的,保存在“pose.txt”文件中。不过对于实际的SLAM,相机位姿数据是通过前端视觉里程计,并通过后端优化才得出的。由于本文只关注点云拼接,因此直接使用相机位姿就可以了,而不必关心它是从何而来的。

int main( int argc, char** argv )
{
    //Step 1
    vector<cv::Mat> colorImgs, depthImgs;    // 彩色图和深度图
    vector<Eigen::Isometry3d> poses;         // 相机位姿
    
    ifstream fin("./pose.txt");
    
    for ( int i=0; i<5; i++ )
    {
        boost::format fmt( "./%s/%d.%s" ); //图像文件格式
        colorImgs.push_back( cv::imread( (fmt%"color"%(i+1)%"png").str() ));
        depthImgs.push_back( cv::imread( (fmt%"depth"%(i+1)%"pgm").str(), -1 )); // 使用-1读取原始图像
        
        double data[7] = {0};
        for ( auto& d:data )
            fin>>d;
        Eigen::Quaterniond q( data[6], data[3], data[4], data[5] );
        Eigen::Isometry3d T(q);
        T.pretranslate( Eigen::Vector3d( data[0], data[1], data[2] ));
        poses.push_back( T );
    }
    //Step 2...
}

代码中值得关注的有两个地方:

  • 使用了boost::format的格式化字符串功能拼接出图片文件名。

  • 取出相机位姿,包括用四元数表示的旋转和xyz轴平移,保存到变换矩阵T中。

Step 2:设定相机内参

相机内参用来将图片中的像素点转换到相机坐标系,进而再使用变换矩阵T变换到世界坐标系。

int main( int argc, char** argv )
{
    //Step 1...
    //Step 2
    // 相机内参 
    double cx = 325.5;
    double cy = 253.5;
    double fx = 518.0;
    double fy = 519.0;
    double depthScale = 1000.0;
    //Step 3...
}

Step 3:拼接点云

pcl点云库提供了非常方便的调用接口,只需要传入每个点的三维坐标和颜色,就可以把多张图片自动拼接到一起。

int main( int argc, char** argv )
{
    //Step 1...
    //Step 2...
    //Step 3
    // 定义点云使用的格式:这里用的是XYZRGB
    typedef pcl::PointXYZRGB PointT; 
    typedef pcl::PointCloud<PointT> PointCloud;
    
    // 新建一个点云
    PointCloud::Ptr pointCloud( new PointCloud ); 
    for ( int i=0; i<5; i++ )
    {
        cout<<"转换图像中: "<<i+1<<endl; 
        cv::Mat color = colorImgs[i]; 
        cv::Mat depth = depthImgs[i];
        Eigen::Isometry3d T = poses[i];
        for ( int v=0; v<color.rows; v++ )
            for ( int u=0; u<color.cols; u++ )
            {
                unsigned int d = depth.ptr<unsigned short> ( v )[u]; // 深度值
                if ( d==0 ) continue; // 为0表示没有测量到
                Eigen::Vector3d point;   //point用来保存该点在相机坐标系下的坐标
                point[2] = double(d)/depthScale;   //深度值根据深度相机规定的尺度因子确定
                point[0] = (u-cx)*point[2]/fx;  //计算x坐标,该等式来源于针孔相机模型
                point[1] = (v-cy)*point[2]/fy;   //计算y坐标,该等式也来源于针孔相机模型
                Eigen::Vector3d pointWorld = T*point;  //将相机坐标系下的坐标变换到世界坐标系
                
                PointT p ;
                p.x = pointWorld[0];
                p.y = pointWorld[1];
                p.z = pointWorld[2];
                p.b = color.data[ v*color.step+u*color.channels() ];
                p.g = color.data[ v*color.step+u*color.channels()+1 ];
                p.r = color.data[ v*color.step+u*color.channels()+2 ];
                pointCloud->points.push_back( p );  //点云中添加一个点
            }
    }
    
    pointCloud->is_dense = false;
    cout<<"点云共有"<<pointCloud->size()<<"个点."<<endl;
    pcl::io::savePCDFileBinary("map.pcd", *pointCloud );
}

这段代码的关键在于最内层的循环体,每次循环处理一个像素点。关键行的代码已经加了详细的注释。需要强调的有两点:

  • 从像素坐标到相机坐标的变换来自于针孔相机模型,这部分理论知识本文不做过多解释。建议阅读《视觉SLAM十四讲》的第五章“相机与图像”以加深理解。
  • 世界坐标系下的点是用Eigen::Vector3d保存的,而点云中的点是用PointT保存的,它们并不兼容。

Step 4:编译运行

到了这步,按理说应该是一马平川了。谁知在测试的过程中反而遇到了许多麻烦,我把它们列出来供大家参考。

  1. 安装pcl库
    需要注意的是不同系统的安装命令不一样,书上以Ubuntu14.04为例,而我的电脑是Debian 8,应当以官网的安装教程为准。此外,pcl库需要用到boost1.62.0,缺少的话运行时会报错。

  2. 链接出错
    使用find_package命令查找pcl库的时候,会把Qt5Widgets也加入链接列表。这是合理的,但是它却把Qt5Widgets库文件名当成了libQt5::Widgets.so,于是找不到链接文件。其实正确的名字是libQt5Widgets.so,没有中间的冒号。这类问题出现的原因现在还不太清楚,解决办法是,创建一个指向libQt5Widgets.so的软链接,软链接名字设为libQt5::Widgets.so,程序就能链接成功了。

五、运行效果

运行程序,会生成一个map.pcd文件,这是一个点云文件。输入命令

pcl_viewer map.pcd

即可看到如下所示的三维场景。而且可以鼠标控制旋转、缩放哦,是不是很炫酷呢!

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 204,189评论 6 478
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,577评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 150,857评论 0 337
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,703评论 1 276
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,705评论 5 366
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,620评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,995评论 3 396
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,656评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,898评论 1 298
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,639评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,720评论 1 330
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,395评论 4 319
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,982评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,953评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,195评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 44,907评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,472评论 2 342

推荐阅读更多精彩内容