概述
我们现在所处的生产环境是一个集Nodejs, Go, Java, Ruby, Scala等多种语言程序的混合场景.Twitter的Finagle框架, 是一个基于Thrift协议的RPC框架,其中Zipkin是针对Finagle框架的一个基于Thrift协议的RPC调用链跟踪的工具,可搜集各服务调用数据,并提供分析查询展示功能。帮助识别分布式RPC调用链里,哪一个调用比较耗时,性能有问题,以及是否有异常等,使得诊断分布式系统性能成为可能。
基本概念
Trace
一次服务调用追踪链路,由一组Span组成。需在web总入口处生成TraceID,并确保在当前请求上下文里能访问到
Annotation
表示某个时间点发生的Event
-
Event类型
cs:Client Send 请求 sr:Server Receive到请求 ss:Server 处理完成、并Send Response cr:Client Receive 到响应
什么时候生成
客户端发送Request、接受到Response、服务器端接受到Request、发送 Response时生成。Annotation属于某个Span,需把新生成的Annotation添加到当前上下文里Span的annotations数组里-
thrift数据结构
/** * Associates an event that explains latency with a timestamp. * * Unlike log statements, annotations are often codes: for example "sr". */ struct Annotation { /** * Microseconds from epoch. * * This value should use the most precise value possible. For example, * gettimeofday or syncing nanoTime against a tick of currentTimeMillis. */ 1: i64 timestamp /** * Usually a short tag indicating an event, like "sr" or "finagle.retry". */ 2: string value /** * The host that recorded the value, primarily for query by service name. */ 3: optional Endpoint host // don't reuse 4: optional i32 OBSOLETE_duration // how long did the operation take? microseconds }
BinaryAnnotation
存放用户自定义信息,比如:sessionID、userID、userIP、异常等
什么时候生成?
在任意需要记录自定义跟踪信息时都可生成。比如:异常、SessionID等。如Annotation一样,BinaryAnnotation也属于某个Span。需把新生成的BinaryAnnotation,添加到当前上下文里Span的binary_annotations数组.-
Thrift数据结构
/** * Binary annotations are tags applied to a Span to give it context. For * example, a binary annotation of "http.uri" could the path to a resource in a * RPC call. * * Binary annotations of type STRING are always queryable, though more a * historical implementation detail than a structural concern. * * Binary annotations can repeat, and vary on the host. Similar to Annotation, * the host indicates who logged the event. This allows you to tell the * difference between the client and server side of the same key. For example, * the key "http.uri" might be different on the client and server side due to * rewriting, like "/api/v1/myresource" vs "/myresource. Via the host field, * you can see the different points of view, which often help in debugging. */ struct BinaryAnnotation { /** * Name used to lookup spans, such as "http.uri" or "finagle.version". */ 1: string key, /** * Serialized thrift bytes, in TBinaryProtocol format. * * For legacy reasons, byte order is big-endian. See THRIFT-3217. */ 2: binary value, /** * The thrift type of value, most often STRING. * * annotation_type shouldn't vary for the same key. */ 3: AnnotationType annotation_type, /** * The host that recorded value, allowing query by service name or address. * * There are two exceptions: when key is "ca" or "sa", this is the source or * destination of an RPC. This exception allows zipkin to display network * context of uninstrumented services, such as browsers or databases. */ 4: optional Endpoint host }
-
AnnotationType 结构
/** * A subset of thrift base types, except BYTES. */ enum AnnotationType { BOOL, BYTES,I16, I32, I64, DOUBLE, STRING }
Span
表示一次完整RPC调用,是由一组Annotation和BinaryAnnotation组成。是追踪服务调用的基本结构,多span形成树形结构组合成一次Trace追踪记录。Span是有父子关系的,比如:Client A、Client A -> B、B ->C、C -> D、分别会产生4个Span。Client A接收到请求会时生成一个Span A、Client A -> B发请求时会再生成一个Span A-B,并且Span A是 Span A-B的父节点
-
什么时候生成
- 服务接受到 Request时,若当前Request没有关联任何Span,便生成一个Span,包括:Span ID、TraceID
- 向下游服务发送Request时,需生成一个Span,并把新生成的Span的父节点设置成上一步生成的Span
-
Thrift结构
/** * A trace is a series of spans (often RPC calls) which form a latency tree. * * Spans are usually created by instrumentation in RPC clients or servers, but * can also represent in-process activity. Annotations in spans are similar to * log statements, and are sometimes created directly by application developers * to indicate events of interest, such as a cache miss. * * The root span is where parent_id = Nil; it usually has the longest duration * in the trace. * * Span identifiers are packed into i64s, but should be treated opaquely. * String encoding is fixed-width lower-hex, to avoid signed interpretation. */ struct Span { /** * Unique 8-byte identifier for a trace, set on all spans within it. */ 1: i64 trace_id /** * Span name in lowercase, rpc method for example. Conventionally, when the * span name isn't known, name = "unknown". */ 3: string name, /** * Unique 8-byte identifier of this span within a trace. A span is uniquely * identified in storage by (trace_id, id). */ 4: i64 id, /** * The parent's Span.id; absent if this the root span in a trace. */ 5: optional i64 parent_id, /** * Associates events that explain latency with a timestamp. Unlike log * statements, annotations are often codes: for example SERVER_RECV("sr"). * Annotations are sorted ascending by timestamp. */ 6: list<Annotation> annotations, /** * Tags a span with context, usually to support query or aggregation. For * example, a binary annotation key could be "http.uri". */ 8: list<BinaryAnnotation> binary_annotations /** * True is a request to store this span even if it overrides sampling policy. */ 9: optional bool debug = 0 /** * Epoch microseconds of the start of this span, absent if this an incomplete * span. * * This value should be set directly by instrumentation, using the most * precise value possible. For example, gettimeofday or syncing nanoTime * against a tick of currentTimeMillis. * * For compatibilty with instrumentation that precede this field, collectors * or span stores can derive this via Annotation.timestamp. * For example, SERVER_RECV.timestamp or CLIENT_SEND.timestamp. * * Timestamp is nullable for input only. Spans without a timestamp cannot be * presented in a timeline: Span stores should not output spans missing a * timestamp. * * There are two known edge-cases where this could be absent: both cases * exist when a collector receives a span in parts and a binary annotation * precedes a timestamp. This is possible when.. * - The span is in-flight (ex not yet received a timestamp) * - The span's start event was lost */ 10: optional i64 timestamp, /** * Measurement in microseconds of the critical path, if known. * * This value should be set directly, as opposed to implicitly via annotation * timestamps. Doing so encourages precision decoupled from problems of * clocks, such as skew or NTP updates causing time to move backwards. * * For compatibility with instrumentation that precede this field, collectors * or span stores can derive this by subtracting Annotation.timestamp. * For example, SERVER_SEND.timestamp - SERVER_RECV.timestamp. * * If this field is persisted as unset, zipkin will continue to work, except * duration query support will be implementation-specific. Similarly, setting * this field non-atomically is implementation-specific. * * This field is i64 vs i32 to support spans longer than 35 minutes. */ 11: optional i64 duration }
服务之间需传递的信息
Trace的基本信息需在上下游服务之间传递,如下信息是必须的:
- Trace ID:起始(根)服务生成的TraceID
- Span ID:调用下游服务时所生成的Span ID
- Parent Span ID:父Span ID
- Is Sampled:是否需要采样
- Flags:告诉下游服务,是否是debug Reqeust
Trace Tree组成
一个完整Trace 由一组Span组成,这一组Span必须具有相同的TraceID;Span具有父子关系,处于子节点的Span必须有parent_id,Span由一组 Annotation和BinaryAnnotation组成。整个Trace Tree通过Trace Id、Span ID、parent Span ID串起来的。
其他要求
- Web入口处,需把SessionID、UserID(若登陆)、用户IP等信息记录到BinaryAnnotation里
- 关键子子调用也需用zipkin追踪,比如:订单调用了Mysql,也许把个调用的耗时情况记录到 Annotation里
- 关键出错日志或者异常也许记录到BinaryAnnotation里
经过上述三条,用户任何访问所引起的后台服务间调用,完全可以串起来,并形成一颗调用树。通过调用树,哪个调用耗时多久,是否有异常等都可清晰定位到。
完整示例
testService(Web服务) -> OrderServ(Thrift) -> StockServ & PayServ(Thrift)。一共有四个服务,testService 调用 OrderServ、OrderServ同时调用 StockServ和PayServ。需生成的Trace信息如下:
- testService收到Http Reqeust时,需在入口处生成TraceID、SpanID,以及一个Span对象,假若叫Span1。
- testService向OrderServ发送 Thrift Request时,需新生成一Span2,并把parent ID设置成Span1的spanID。同事需修改Thrift Header,把Span2的spanID、parent ID、TraceID 传递给下游服务。也需生成"cs" Annotation,关联到span2上;当接受到OrderServ的Response时,再生成"cr" Annotation,也关联到span2上。
- OrderServ接受到Thrift Request后,从Thrift Header里解析到TraceID、parent ID、 Span ID(span2)、并保留到上下文里。同时生成"sr"Annotaition,并关联到span2上;当处理完成发送response时,再生成"ss"Annotation,并关联到span2上。
- OrderServ向StockServ发送 Thrift Request时,需新生成一Span3,并把parentID设置成上一步(Span2)的span ID。Annotation处理如上。
- Order Serv向PayServ发送请求时,新生成一Span4,并把parentID设置Span2的span ID。Annotation处理如上。
总结客户端要做哪些事情?
Thrift协议扩展(参照Finagle)
- Thrift Server端向Thrift协议Header里增加TraceID、SpanID、ParentID、Flags、Is Sampled
- Thrift Client从Thrift Request里解析出TraceID、SpanID、ParentID、flags、Is Sampled
Trace数据生成
- Web入口处,生成TraceID、SpanID、以及Span对象,并把sessionID、userID、userIP记录到BinaryAnnotation里.
- 调用下游服务时生成Span对象.
- Thrift客户端Send Request时,生成"cs" Annotation.
- Thrift客户端Receive Response时,生成"cr"Annotation.
- Thrift服务器端Receive Reqeust时,生成"sr" Annotation.
- Thrift服务器端Send Response时,生成"ss"Annotation.
- 异常、关键系统调用数据也要记录到Annotation里.
Trace数据传递与收集
- 数据刷新不能影响业务性能,刷新失败更不能影响正常业务逻辑.
- 上下文传递
- 入口处生成的TraceID、SpanID需要在当前Request上下文里读取到
- Ruby 、java、NodeJS上下文传递要做到业务代码透明, Golang单独处理
- 客户端生成Trace数据,并写入到本地log文件
- 由logstash(类似工具)统一搜集日志,并写入kafka
- 由kafka consumer从kafka读取数据,并索引到ES里
Zipkin跟踪数据收集格式定义
我们针对跟踪数据的收集的统一接入点, 为kafka.所有应用产生的zipkin数据统一发送到Kafka集群中.具体的channel为: EAGLEYE_ZIPKIN_CHANNEL.
Span(记录每次调用信息)
JSON串范例(格式化):
span{
"app": "app", //所属应用
"flag": "flag", //cscr标明是调用端,srss标明是被调用端。标识, 一个span数据 ,会有基本的cr, cs, sr, ss四个点. 但是获取数据时,一般只能两两获取, 所以, 一个span通常会被分割为cr, cs和 sr, ss分别发送
"ip": "192.168.10.100", //ip地址
"mname": "mname", //方法名
"pid": "pid", //进程id
"port": 1000, //端口, 如果是cscr客户端, 则为0
"psid": "psid", //parent span id
"sid": "sid", //spanId
"sname": "sname", //服务名
"etime": 1449072000000, //结束时间点, 单位到ms,如果是client端,则是cr时间点, 如果是server端,则是ss时间点
"stime": 1449039924512, //开始时间点, 单位到ms, 如果是client端,则是cs时间点, 如果是server端,则是sr时间点
"duration": 32075488, //结束时间点减去开始时间点的, 调用的区间时长, 单位ms
"tid": "tid", //traceId
"timestamp": 1449039924548 //产生的时间点
}
备注: span信息的json,添加'span'头信息, 在通过kafka做收集时, 通过该头信息将span信息路由到独立的es的index中. 每一条span记录其实是半个span信息, 要么是client端产生的, 要么是server端产生的.
BinaryAnnotation(可以用来传递用户session_id的信息, 也可以传递其他业务信息)
-
JSON串范例(格式化)
{ "app": "app", //所属应用 "ip": "ip", //ip地址,冗余信息 "key": "key", //key, 可以设为存储用户session的key, 如果是用来传递用户session信息的, 可以统一约定为: session_id "mname": "mname", //方法名 "pid": "10000", //进程id,冗余信息 "sid": "sid", //spanId "sname": "sname", //服务名 "tid": "tid", //traceId "timestamp": 1449038780194, //产生的时间戳, 长整型, 精确到毫秒 "type": "type", //类型,用来区分是记录异常的还是业务流程的等等, 默认是'common'即可 "value": "value" //如果是传递用户session信息 ,可以直接写在该字段中. }
备注:这里将BinaryAnnotation独立记录, 并发送到kafka消息队列, 其通过sid关联具体的span信息.
java使用zipkin经验
- 客户端调用服务端失败(服务端没启动),客户端的annotations有cs、cr
- 客户端超时(等待响应超时),服务端的annotations有sr、ss,客户端的annotations有cs、cr
- 服务端超时,服务端的annotations有timeout和sr,没有ss、没有binary_annotation,客户端的annotations有cs、cr
- 客户端无法记录binary_annotation
实际效果
收集了Zipkin产生的RPC调用链信息,并给服务治理框架提供跟踪信息检索(双击某行有问题的Span记录可以查看某次调用链详情,了解具体的网络情况和业务执行情况)