香农信息公式:
1、单调性。概率越大,信息熵越小,概率越小,信息熵越大
2、非负性。信息熵大于0
3、可加性。几个事件的同时发生的信息熵等于单个事件发生的信息熵之和。
信息熵:对信息的量化度量。用来描述信息的不确定度。
信息熵公式解释:二进制下,对数底数是2,此时信息熵可以作为信息的度量,成为信息量,单位是比特。
以下来自百度百科:
通常,一个信源发送出什么符号是不确定的,衡量它可以根据其出现的概率来度量。概率大,出现机会多,不确定性小;反之就大。
不确定性函数f是概率P的单调递降函数;两个独立符号所产生的不确定性应等于各自不确定性之和,即f(P1,P2)=f(P1)+f(P2),这称为可加性。同时满足这两个条件的函数f是对数函数,即
在信源中,考虑的不是某一单个符号发生的不确定性,而是要考虑这个信源所有可能发生情况的平均不确定性。若信源符号有n种取值:U1…Ui…Un,对应概率为:P1…Pi…Pn,且各种符号的出现彼此独立。这时,信源的平均不确定性应当为单个符号不确定性-logPi的统计平均值(E),可称为信息熵,即
,式中对数一般取2为底,单位为比特。但是,也可以取其它对数底,采用其它相应的单位,它们间可用换底公式换算。
最简单的单符号信源仅取0和1两个元素,即二元信源,其概率为P和Q=1-P,该信源的熵即为如图1所示。
由图可见,离散信源的信息熵具有:①非负性,即收到一个信源符号所获得的信息量应为正值,H(U)≥0;②对称性,即对称于P=0.5(③确定性,H(1,0)=0,即P=0或P=1已是确定状态,所得信息量为零;④极值性,当P=0.5时,H(U)最大;而且H(U)是P的上凸函数。
对连续信源,香农给出了形式上类似于离散信源的连续熵,
图1 二元信源的熵
虽然连续熵HC(U)仍具有可加性,但不具有信息的非负性,已不同于离散信源。HC(U)不代表连续信源的信息量。连续信源取值无限,信息量是无限大,而HC(U)是一个有限的相对值,又称相对熵。但是,在取两熵的差值为互信息时,它仍具有非负性。这与力学中势能的定义相仿。