NSQ学习:流控的实现

消息中间件的pull与push

消息中间件的实现无非两种套路,一种让客户端pull,典型的比如kafka便是如此,而另一种则是push,也就是让客户端不需要做任何操作,只需要连接上服务端便可以源源不断收到服务端的推送,典型的代表就是我们今天介绍的nsq。
pull的优势在于客户端可以自己做流控,比如客户端想什么时候pull就什么时候pull,不会因为服务端的强迫而接受,但劣势也很明显,如果服务端的生产速度很慢,客户端需要不断的轮询会让cpu处于繁忙且无用的状态。
push的优势则在于能够不受限于客户端的速度,可以让服务端更快的、批量的把数据push给客户端,因此大部分push实现的消息中间件都是属于内存型,而nsq比较特殊,它实际上是内存+磁盘的一个消息中间件。

push流的nsq如何做流控

上面也说了,pull流的优势在于可以让客户端自由控制消息的速度,但是push流不一样,push流不管客户端是否多繁忙都会推送消息,如果没有一个流控机制,很容易让客户端最终因为消费速度跟不上导致产生各种性能问题。nsq其实也考虑到这一点,于是采用了一个RDY的状态字段来表示流控。简单来说,就是客户端连接上nsqd之后,会告诉nsqd它的可接受的消息数量是多少,每当nsqd给客户端推送一条消息这个RDY就会减一,而客户端消费完毕并且发送一个FIN之后,这个RDY又会加一(其实这个设计有点类似tcp中的用来控制流量的窗口机制)

go-nsq客户端

我们来参考一下golang官方实现的nsq客户端是如何控制这个rdy的。
首先编写一个客户端:

type Customter struct {}

func (c *Customter) HandleMessage(msg *nsq.Message) error {
    fmt.Println("receive: ", string(msg.Body))
    return nil
}

func main() {
    cfg := nsq.NewConfig()
    cfg.LookupdPollInterval = time.Second
    customer, err := nsq.NewConsumer("test", "t1", cfg)
    if err != nil {
        log.Panic(err)
    }
    customer.AddHandler(&Customter{})
    if err := customer.ConnectToNSQD("127.0.0.1:4161"); err != nil {
        log.Panic(err)
    }
    select {}
}

跳进源码,可以看到go-nsq的Consumer结构体有一个字段connections

// github.com/nsqio/go-nsq/customer.go
type Consumer struct {
..... 
connections        map[string]*Conn
....
}
=

当我们上面的demo调用ConnectToNSQD的时候,这个connections的map会写入对应的nsqd addr作为key,连接成功的Conn作为value:

r.connections[addr] = conn
for _, c := range r.conns() {
    r.maybeUpdateRDY(c)
}

上面代码表示会遍历这个Customer的所有nsqd conn(customer可以同时连接多个nsqd),然后调用maybeUpdateRDY这个方法:

    // 当剩余rdy的数量等于1,或者少于最近一次的rdycount的25%,就调整这个rdycount,这个rdycount就取用户设置的MaxInFlight
    if remain <= 1 || remain < (lastRdyCount/4) || (count > 0 && count < remain) {
        r.log(LogLevelDebug, "(%s) sending RDY %d (%d remain from last RDY %d)",
            conn, count, remain, lastRdyCount)
        r.updateRDY(conn, count)
    } else {

由此我们可以得知,nsqd的客户端在连接nsqd的时候就会设置一个初始的rdycount。当然,在连接成功之后,也会有一个gorountine后台不断去调整这个rdycount

func (r *Consumer) rdyLoop() {
    redistributeTicker := time.NewTicker(r.config.RDYRedistributeInterval)

    for {
        select {
        case <-redistributeTicker.C:
            r.redistributeRDY()
        case <-r.exitChan:
            goto exit
        }
    }

exit:
    redistributeTicker.Stop()
    r.log(LogLevelInfo, "rdyLoop exiting")
    r.wg.Done()
}

参考链接

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 216,125评论 6 498
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,293评论 3 392
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 162,054评论 0 351
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,077评论 1 291
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,096评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,062评论 1 295
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,988评论 3 417
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,817评论 0 273
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,266评论 1 310
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,486评论 2 331
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,646评论 1 347
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,375评论 5 342
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,974评论 3 325
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,621评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,796评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,642评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,538评论 2 352

推荐阅读更多精彩内容