zookeeper简介
Zookeeper是一种在分布式系统中被广泛用来作为:分布式状态管理、分布式协调管理、分布式配置管理、和分布式锁服务的集群。kafka增加和减少服务器都会在Zookeeper节点上触发相应的事件kafka系统会捕获这些事件,进行新一轮的负载均衡,客户端也会捕获这些事件来进行新一轮的处理。
kafka简介
生产者生产消息、kafka集群、消费者获取消息这样一种架构,如下图:
一些基本的概念:
Broker:Kafka集群包含一个或多个服务器,这种服务器被称为broker
Topic :每条发布到Kafka集群的消息都有一个类别,这个类别被称为topic。(物理上不同topic的消息分开存储,逻辑上一个topic的消息虽然保存于一个或多个broker上但用户只需指定消息的topic即可生产或消费数据而不必关心数据存于何处)
Partition :parition是物理上的概念,每个topic包含一个或多个partition,创建topic时可指定parition数量。每个partition对应于一个文件夹,该文件夹下存储该partition的数据和索引文件。一个分区可以看作是一个FIFO的队列。
Tips:kafka只保证同一个Partition中的消息的顺序性的。所以如果需要顺序消费数据,可以根据key来消费。根据官方介绍:If a valid partition number is specified that partition will be used when sending the record. If no partition is specified but a key is present a partition will be chosen using a hash of the key. If neither key nor partition is present a partition will be assigned in a round-robin fashion.
Producer : 负责发布消息到Kafka broker
Consumer :消费消息。每个consumer属于一个特定的consuer group(可为每个consumer指定group name,若不指定group name则属于默认的group)。使用consumer high level API时,同一topic的一条消息只能被同一个consumer group内的一个consumer消费,但多个consumer group可同时消费这一消息。
工作图:
一个典型的kafka集群中包含若干producer(可以是web前端产生的page view,或者是服务器日志,系统CPU、memory等),若干broker(Kafka支持水平扩展,一般broker数量越多,集群吞吐率越高),若干consumer group,以及一个Zookeeper集群。Kafka通过Zookeeper管理集群配置,选举leader,以及在consumer group发生变化时进行rebalance。producer使用push模式将消息发布到broker,consumer使pull模式从broker订阅并消费消息。
Topic & Partition
Topic在逻辑上可以被认为是一个在的queue,每条消费都必须指定它的topic,可以简单理解为必须指明把这条消息放进哪个queue里。为了使得Kafka的吞吐率可以水平扩展,物理上把topic分成一个或多个partition,每个partition在物理上对应一个文件夹,该文件夹下存储这个partition的所有消息和索引文件。
如果partition规则设置的合理,所有消息可以均匀分布到不同的partition里,这样就实现了水平扩展。(如果一个topic对应一个文件,那这个文件所在的机器I/O将会成为这个topic的性能瓶颈,而partition解决了这个问题)。在创建topic时可以在$KAFKA_HOME/config/server.properties中指定这个partition的数量(如下所示),当然也可以在topic创建之后去修改parition数量。
# The default number of log partitions per topic. More partitions allow greater# parallelism for consumption, but this will also result in more files across# the brokers.num.partitions=3
tips:对于传统的message queue而言,一般会删除已经被消费的消息,而Kafka集群会保留所有的消息,无论其被消费与否。当然,因为磁盘限制,不可能永久保留所有数据(实际上也没必要),因此Kafka提供两种策略去删除旧数据。一是基于时间,二是基于partition文件大小。例如可以通过配置$KAFKA_HOME/config/server.properties,让Kafka删除一周前的数据,也可通过配置让Kafka在partition文件超过1GB时删除旧数据。这里要注意,因为Kafka读取特定消息的时间复杂度为O(1),即与文件大小无关,所以这里删除文件与Kafka性能无关,选择怎样的删除策略只与磁盘以及具体的需求有关。另外,Kafka会为每一个consumer group保留一些metadata信息—当前消费的消息的position,也即offset。这个offset由consumer控制。正常情况下consumer会在消费完一条消息后线性增加这个offset。当然,consumer也可将offset设成一个较小的值,重新消费一些消息。因为offet由consumer控制,所以Kafka broker是无状态的,它不需要标记哪些消息被哪些consumer过,不需要通过broker去保证同一个consumer group只有一个consumer能消费某一条消息,因此也就不需要锁机制,这也为Kafka的高吞吐率提供了有力保障。
Replication & Leader election
该 Replication与leader election配合提供了自动的failover机制。replication对Kafka的吞吐率是有一定影响的,但极大的增强了可用性。默认情况下,Kafka的replication数量为1。 每个partition都有一个唯一的leader,所有的读写操作都在leader上完成,follower批量从leader上pull数据。一般情况下partition的数量大于等于broker的数量,并且所有partition的leader均匀分布在broker上。follower上的日志和其leader上的完全一样。
和大部分分布式系统一样,Kakfa处理失败需要明确定义一个broker是否alive。对于Kafka而言,Kafka存活包含两个条件,一是它必须维护与Zookeeper的session(这个通过Zookeeper的heartbeat机制来实现)。二是follower必须能够及时将leader的writing复制过来,不能“落后太多”。
leader会track“in sync”的node list。如果一个follower宕机,或者落后太多,leader将把它从”in sync” list中移除。这里所描述的“落后太多”指follower复制的消息落后于leader后的条数超过预定值。该值是server.properties文件中的replica.lag.max.messages=4000
tips:Kafka只解决”fail/recover”,不处理“Byzantine”(“拜占庭”)问题。这里应该就是CAP理论中的AP吧。一条消息只有被“in sync” list里的所有follower都从leader复制过去才会被认为已提交。这样就避免了部分数据被写进了leader,还没来得及被任何follower复制就宕机了,而造成数据丢失(consumer无法消费这些数据)。而对于producer而言,它可以选择是否等待消息commit,这可以通过request.required.acks来设置。这种机制确保了只要“in sync” list有一个或以上的flollower,一条被commit的消息就不会丢失。
这里的复制机制即不是同步复制,也不是单纯的异步复制。事实上,同步复制要求“活着的”follower都复制完,这条消息才会被认为commit,这种复制方式极大的影响了吞吐率。而异步复制方式下,follower异步的从leader复制数据,数据只要被leader写入log就被认为已经commit,这种情况下如果follwer都落后于leader,而leader突然宕机,则会丢失数据。而Kafka的这种使用“in sync” list的方式则很好的均衡了确保数据不丢失以及吞吐率。follower可以批量的从leader复制数据,这样极大的提高复制性能(批量写磁盘),极大减少了follower与leader的差距(前文有说到,只要follower落后leader不太远,则被认为在“in sync” list里)。
上文说明了Kafka是如何做replication的,另外一个很重要的问题是当leader宕机了,怎样在follower中选举出新的leader。因为follower可能落后许多或者crash了,所以必须确保选择“最新”的follower作为新的leader。一个基本的原则就是,如果leader不在了,新的leader必须拥有原来的leader commit的所有消息。这就需要作一个折衷,如果leader在标明一条消息被commit前等待更多的follower确认,那在它die之后就有更多的follower可以作为新的leader,但这也会造成吞吐率的下降。
一种非常常用的选举leader的方式是“majority 灵秀”(“少数服从多数”),这种模式下,如果我们有2f+1个replica(包含leader和follower),那在commit之前必须保证有f+1个replica复制完消息,为了保证正确选出新的leader,fail的replica不能超过f个。因为在剩下的任意f+1个replica里,至少有一个replica包含有最新的所有消息。这种方式有个很大的优势,系统的latency只取决于最快的几台server,也就是说,如果replication factor是3,那latency就取决于最快的那个follower而非最慢那个。majority vote也有一些劣势,为了保证leader election的正常进行,它所能容忍的fail的follower个数比较少。如果要容忍1个follower挂掉,必须要有3个以上的replica,如果要容忍2个follower挂掉,必须要有5个以上的replica。也就是说,在生产环境下为了保证较高的容错程度,必须要有大量的replica,而大量的replica又会在大数据量下导致性能的急剧下降。这就是这种算法更多用在Zookeeper这种共享集群配置的系统中而很少在需要存储大量数据的系统中使用的原因。
而kafka的方式是:Kafka在Zookeeper中动态维护了一个ISR(in-sync replicas) set,这个set里的所有replica都跟上了leader,只有ISR里的成员才有被选为leader的可能。在这种模式下,对于f+1个replica,一个Kafka topic能在保证不丢失已经commit的消息的前提下容忍f个replica的失败。