注意力机制(Attention Mechanism)

继2015年的深度学习和人工智能进展之后,许多研究人员对神经网络中的“注意力机制”非常感兴趣。这篇文章旨在对深度学习中注意力机制进行高层次的解释,并详细介绍计算attention的一些技术步骤。 如果你正在寻找这方面更多的方程或例子,参考文献给出了大量的细节,特别是Cho等人[3]最近的综述。 不幸的是,这些模型并不总是直接由你自己来实现,到目前为止也仅有少数几个项目发布了开源实现。

Attention

在神经学和计算神经学中已经广泛研究了涉及attention的神经过程[1,2]。视觉attention是他们特别研究的方面之一: 许多动物专注于其看到的特定区域以获得适当的反应。这个原则对神经计算有很大的影响,因为我们需要选择最相关的信息,而不是使用所有可用的信息,其中很大一部分信息对于计算神经反应来说是无关的。专注于输入的特定部分这种类似的想法,已经应用于深度学习,比如语音识别,机器翻译,机器推理和物体的视觉识别。

Attention for Image Captioning

我们用一个例子来解释attention机制。 我们要实现的任务是图像描述--为给定图像生成描述语句。
一个经典图像描述系统将使用预先训练的会产生隐藏状态h的卷积神经网络(CNN)对图像进行编码。 然后,通过使用递归神经网络(RNN)来解码该隐藏状态,并且递归地生成描述序列中的每个字。这种方法已被多个组织应用,包括[11] (见下图) :

图像描述.png

参考文献:
[1] Itti, Laurent, Christof Koch, and Ernst Niebur. « A model of saliency-based visual attention for rapid scene analysis. » IEEE Transactions on Pattern Analysis & Machine Intelligence 11 (1998): 1254-1259.
[2] Desimone, Robert, and John Duncan. « Neural mechanisms of selective visual attention. » Annual review of neuroscience 18.1 (1995): 193-222.
[3] Cho, Kyunghyun, Aaron Courville, and Yoshua Bengio. « Describing Multimedia Content using Attention-based Encoder–Decoder Networks. » arXiv preprint arXiv:1507.01053 (2015)

[4] Xu, Kelvin, et al. « Show, attend and tell: Neural image caption generation with visual attention. » arXiv preprint arXiv:1502.03044 (2015).

[5] Bahdanau, Dzmitry, Kyunghyun Cho, and Yoshua Bengio. « Neural machine translation by jointly learning to align and translate. » arXiv preprint arXiv:1409.0473 (2014).

[6] Sukhbaatar, Sainbayar, Jason Weston, and Rob Fergus. « End-to-end memory networks. » Advances in Neural Information Processing Systems. (2015).

[7] Graves, Alex, Greg Wayne, and Ivo Danihelka. « Neural Turing Machines. » arXiv preprint arXiv:1410.5401 (2014).

[8] Joulin, Armand, and Tomas Mikolov. « Inferring Algorithmic Patterns with Stack-Augmented Recurrent Nets. » arXiv preprint arXiv:1503.01007 (2015).

[9] Hermann, Karl Moritz, et al. « Teaching machines to read and comprehend. » Advances in Neural Information Processing Systems. 2015.

[10] Raffel, Colin, and Daniel PW Ellis. « Feed-Forward Networks with Attention Can Solve Some Long-Term Memory Problems. » arXiv preprint arXiv:1512.08756 (2015).

[11] Vinyals, Oriol, et al. « Show and tell: A neural image caption generator. » arXiv preprint arXiv:1411.4555 (2014).

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 221,695评论 6 515
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 94,569评论 3 399
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 168,130评论 0 360
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 59,648评论 1 297
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 68,655评论 6 397
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 52,268评论 1 309
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,835评论 3 421
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 39,740评论 0 276
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 46,286评论 1 318
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 38,375评论 3 340
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 40,505评论 1 352
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 36,185评论 5 350
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,873评论 3 333
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 32,357评论 0 24
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 33,466评论 1 272
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 48,921评论 3 376
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 45,515评论 2 359

推荐阅读更多精彩内容