Android GPS定位轨迹抽稀之道格拉斯-普克(Douglas-Peuker)算法详解

1、抽稀

通俗点讲,直接举个栗子吧:我们知道运动轨迹实际上是由很多个经纬度坐标连接而成。那么我们是否需要将所有运动时记录下来的经纬度坐标都用来绘制轨迹呢?其实是没必要的,很多数据其实是多余的,实际上将这些多余的数据剔除仍然能保证轨迹曲线形状大致不变,而且还能让曲线更平滑更节省存储空间,类似这样的过程我们就称之为抽稀。抽稀的算法很多,这里将介绍一种经典的算法:道格拉斯-普克(Douglas-Peuker)算法。

2、道格拉斯-普克(Douglas-Peuker)算法

还是举个栗子吧,假设在平面坐标系上有一条由N个坐标点组成的曲线,已设定一个阈值epsilon
(1)首先,将起始点与结束点用直线连接, 再找出到该直线的距离最大,同时又大于阈值epsilon的点并记录下该点的位置(这里暂且称其为最大阈值点),如图所示:

(2)接着,以该点为分界点,将整条曲线分割成两段(这里暂且称之为左曲线和右曲线),将这两段曲线想象成独立的曲线然后重复操作(1),找出两边的最大阈值点,如图所示:

(3)最后,重复操作(2)(1)直至再也找不到最大阈值点为止,然后将所有最大阈值点按顺序连接起来便可以得到一条更简化的,更平滑的,与原曲线十分近似的曲线,如图所示:

2、如何实现?

OK,终于到代码登场了,不废话,上代码:
Point类:

public class Point {
    double x;
    double y;

    public Point(int x, int y) {
        this.x = x;
        this.y = y;
        System.out.print("(" + x + "," + y + ") ");
    }

    public static Point instance(int x, int y) {
        return new Point(x, y);
    }
}

DouglasPeuckerUtil 类:

public class DouglasPeuckerUtil {

    public static void main(String[] args) {

        System.out.print("原始坐标:");

        List<Point> points = new ArrayList<>();
        List<Point> result = new ArrayList<>();

        points.add(Point.instance(1, 1));
        points.add(Point.instance(2, 2));
        points.add(Point.instance(3, 4));
        points.add(Point.instance(4, 1));
        points.add(Point.instance(5, 0));
        points.add(Point.instance(6, 3));
        points.add(Point.instance(7, 5));
        points.add(Point.instance(8, 2));
        points.add(Point.instance(9, 1));
        points.add(Point.instance(10, 6));

        System.out.println("");
        System.out
                .println("=====================================================================");
        System.out.print("抽稀坐标:");

        result = DouglasPeucker(points, 1);

        for (Point p : result) {
            System.out.print("(" + p.x + "," + p.y + ") ");
        }
    }

    public static List<Point> DouglasPeucker(List<Point> points, int epsilon) {
        // 找到最大阈值点,即操作(1)
        double maxH = 0;
        int index = 0;
        int end = points.size();
        for (int i = 1; i < end - 1; i++) {
            double h = H(points.get(i), points.get(0), points.get(end - 1));
            if (h > maxH) {
                maxH = h;
                index = i;
            }
        }

        // 如果存在最大阈值点,就进行递归遍历出所有最大阈值点
        List<Point> result = new ArrayList<>();
        if (maxH > epsilon) {
            List<Point> leftPoints = new ArrayList<>();// 左曲线
            List<Point> rightPoints = new ArrayList<>();// 右曲线
            // 分别提取出左曲线和右曲线的坐标点
            for (int i = 0; i < end; i++) {
                if (i <= index) {
                    leftPoints.add(points.get(i));
                    if (i == index)
                        rightPoints.add(points.get(i));
                } else {
                    rightPoints.add(points.get(i));
                }
            }

            // 分别保存两边遍历的结果
            List<Point> leftResult = new ArrayList<>();
            List<Point> rightResult = new ArrayList<>();
            leftResult = DouglasPeucker(leftPoints, epsilon);
            rightResult = DouglasPeucker(rightPoints, epsilon);

            // 将两边的结果整合
            rightResult.remove(0);//移除重复点
            leftResult.addAll(rightResult);
            result = leftResult;
        } else {// 如果不存在最大阈值点则返回当前遍历的子曲线的起始点
            result.add(points.get(0));
            result.add(points.get(end - 1));
        }
        return result;
    }

    /**
     * 计算点到直线的距离
     * 
     * @param p
     * @param s
     * @param e
     * @return
     */
    public static double H(Point p, Point s, Point e) {
        double AB = distance(s, e);
        double CB = distance(p, s);
        double CA = distance(p, e);

        double S = helen(CB, CA, AB);
        double H = 2 * S / AB;

        return H;
    }

    /**
     * 计算两点之间的距离
     * 
     * @param p1
     * @param p2
     * @return
     */
    public static double distance(Point p1, Point p2) {
        double x1 = p1.x;
        double y1 = p1.y;

        double x2 = p2.x;
        double y2 = p2.y;

        double xy = Math.sqrt((x1 - x2) * (x1 - x2) + (y1 - y2) * (y1 - y2));
        return xy;
    }

    /**
     * 海伦公式,已知三边求三角形面积
     * 
     * @param cB
     * @param cA
     * @param aB
     * @return 面积
     */
    public static double helen(double CB, double CA, double AB) {
        double p = (CB + CA + AB) / 2;
        double S = Math.sqrt(p * (p - CB) * (p - CA) * (p - AB));
        return S;
    }

输出结果:

OK,平面坐标上的Douglas-Peuker算法已经基本实现了!但是如果换成经纬度呢?其实不用担心,地图API一般都会提供计算两个经纬度坐标之间距离的函数,所以万变不离其宗,思路还是一样的,大胆点,代码啪啪啪的敲起来吧!

这里有一个基于百度地图实现的Demo供大家参考:
https://github.com/wnn1302/TrackDemo

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 213,254评论 6 492
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,875评论 3 387
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 158,682评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,896评论 1 285
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,015评论 6 385
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,152评论 1 291
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,208评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,962评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,388评论 1 304
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,700评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,867评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,551评论 4 335
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,186评论 3 317
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,901评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,142评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,689评论 2 362
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,757评论 2 351

推荐阅读更多精彩内容