pyplot 入门概念小结

开始学习数据分析,我们可以对照着python操作来学习r操作,反过来当然也可以,因为两种语言环境的数据操作方法,数据结构都有很强的相似性,甚至有时候名字都是类似的,例如Dataframe数据结构,groupby方法。但是这个画图操作,常用的ggplot和pyplot则感觉完全就没有什么可以互相借鉴的地方。

ggplot的逻辑我总觉得很好理解,就是不停的叠加图层。可是学习pyplot总感觉各种懵逼,看了入门教程画出一些折线图,柱状图,但是看别人的代码却好像实现过程完全不一样,还经常混入各种搞不清楚的概念,例如:

  • Axes - Subplot - Axis 之间到底是个什么关系?
  • plt.plot()ax.plot() 长得这么像,功能又一样,但是好像有有点什么区别!

我喜欢的学习过程是,在初步了解常用操作后,不求完全理解,直接边查文档,边过别人的代码,一方面可以了解到到底哪些操作最常用,另一方面可以了解到各种操作之间的相互协作过程。我的基础想想也知道是不是特别牢靠的。所以才有了以上懵逼,所以 估计认真刷教程的同学应该是没有这种疑惑的。


1.axes subplot axis

先说第一个疑惑 Axes - Subplot - Axis 之间到底是个什么关系?

因为我是努力在看英文的教程,所以刚开始对axes和axis是基本搞不清的,一个是轴的复数,一个是轴,好像设定图像属性的时候经常用axes,具体到某个坐标轴的时候才会用axis。然后教程还说,subplot和axes基本就是一个意思。真是坑坑坑。。。

扛不住,翻了翻中文教程,好像有的教程就直接把axes翻译成子图了,好像这个世界就压根没有subplot和axes的区别。。看了半天,其实我还是觉得axes翻译成轴域比较贴切,下面就结合后来看到的各种教程来讲讲自己最后的理解。


1.1 先明确Figure的概念

import numpy as np
import matplotlib.pyplot as plt

fig = plt.figure()
plt.show()

<matplotlib.figure.Figure at 0x1051cdf50>

我们先理清figure的概念。用画板和画纸来做比喻的话,figure就好像是画板,是画纸的载体,但是具体画画等操作是在画纸上完成的。在pyplot中,画纸的概念对应的就是Axes/Subplot。

画板与画纸
画板与画纸
fig = plt.figure()
ax = fig.add_subplot(111)
ax.set(xlim=[0.5, 4.5], ylim=[-2, 8], title='An Example Axes',
ylabel='Y-Axis', xlabel='X-Axis')
plt.show()

所以就算我们只有一个子图,我们也可以生成一个subplot,然后来在对这个subplot对象进行各种轴、标注、刻度等的设定。


1.2 Axes 和 Subplot 的概念上细微的区别

fig = plt.figure()
ax1 = fig.add_subplot(211)
ax2 = fig.add_subplot(212)
print type(ax1)
plt.show()

<class 'matplotlib.axes._subplots.AxesSubplot'>

第一个例子是用subplot()方法。

subplot()方法很好理解。里面传入的三个数字,前两个数字代表要生成几行几列的子图矩阵,底单个数字代表选中的子图位置。这个例子中我们生成了2行1列的子图矩阵。可以分别在两个subplot中画图。

fig = plt.figure()
ax3 = fig.add_axes([0.1, 0.1, 0.8, 0.8])
ax4 = fig.add_axes([0.72, 0.72, 0.16, 0.16])
print type(ax3)
plt.show()

<class 'matplotlib.axes._axes.Axes'>

第二个例子是用add_axes()方法。

我觉得轴域(Axes)的感念确实可以先理解成一些轴(Axis)的集合,当然这个集合还有很多轴(Axis)的属性,标注等等。我们用add_axes()方法生成一个轴域(Axes),括号里面的值前两个是轴域原点坐标(从左下角计算的),后两个是显示坐标轴的长度。
当我们生成了轴域的时候,从结果上看确实是生成了一个可以画图的子图。我们可以分别在两个轴域(Axes)中画图。

对比两种方法,两种对象,我们可以总结总结:

  • 两种对象确实是“你中有我,我中有你”的关系,生成子图(subplot)的时候,必然带着所谓的一套轴域(Axes)。而用轴域(Axes)方法,客观上就是生成了一个可以画图的子图。
  • add_subplot()方法在生成子图过程,简单明了,而用add_axes()方法,则生成子图的灵活性更强,完全可以实现add_subplot()方法的功能,可以控制子图显示位置,甚至实现相互重叠的效果。例如:

2 Axes方法与pyplot函数

用野路子法,也就是直接看代码,不懂的就查文档,看别人的代码的时候,图像的的各种特性经常用两套方法实现,对学习过真是毁灭性打击。所以遇到模仿的瓶颈的时候,还是要找些教程看看。
这里基本照搬翻译,https://github.com/matplotlib/AnatomyOfMatplotlib 教程中的Part1的 Axes methods vs. pyplot 一节。

plt.plot([1, 2, 3, 4], [10, 20, 25, 30], color='lightblue', linewidth=3)
plt.xlim(0.5, 4.5)
plt.show()
fig = plt.figure()
ax = fig.add_subplot(111)
print type(ax)
ax.plot([1, 2, 3, 4], [10, 20, 25, 30], color='lightblue', linewidth=3)
ax.set_xlim(0.5, 4.5)
plt.show()

<class 'matplotlib.axes._subplots.AxesSubplot'>

本次画图涉及到的两步操作,画图和设定x轴的显示范围,分别用前后两种方法实现。

第一种,调用了pyplot中的 plot() 函数和 xlim() 函数,

第二种,使用了生成的Subplot对象的两种方法 .plot.set_xlim 方法。

实际上,实现整个画图过程可以用两套工具来分别实现,其实这也是贯穿整个python编程的两种思路,函数式编程和对象式编程。我们在这里可以比较一下两套工具的优缺点:

  • plot() 为代表的函数式操作,表达简洁,但是没有体现出真正画图的实现过程,例如甚至当没有搞清楚Figure Axes Subplot 等概念的时候,依然可以轻松的用pyplot函数画图。当子图较多的时候,对子图的操作容易陷入混乱,因为从代码上并不能字节观察出到底在操作那张子图。
  • .plot 为代表的对象式操作,表达明确,分步生成 Figure 和 Axes/Subplot,操作过程直接可以看出是在那张子图上操作。但是缺点就是,需要写的代码比较多,不够简洁。

这里要吐槽一下我看的这个教程,作者提出了在 PEP20 中,“Python之道”(The Zen of Python)提到了“明了胜于晦涩”(Explicit is better than implicit),所以作者在整个教程中都是使用了对象式的方法。
但是其实”Python之道“的下一句就是“简洁胜于复杂”(Complex is better than complicated)。

所以,还是看你的使用场景,假如不需要画子图的时候,用一用简单的pyplot方法也没什么不好。但是初学者最好还是能够坚持先使用Axes对象属性的方法,这样对于画图的实现过程可以加深理解。


3 补充

自己看代码,有时候不太理解的代码写法。

  • fig, ax = plt.subplots()

这个写法其实就是一下两行代码的缩写版。

fig = plt.figure()
ax = fig.add_subplot(111)
plt.show()

当然有子图的实现过程,也是可以的。“

fig, axes = plt.subplots(nrows=2, ncols=2)
axes[0,0].set(title='Upper Left')
axes[0,1].set(title='Upper Right')
axes[1,0].set(title='Lower Left')
axes[1,1].set(title='Lower Right')

# 遍历整个axes。flat方法是将整个numpy对象转换成了1维对象,然后遍历。
for ax in axes.flat:
# Remove all xticks and yticks...
ax.set(xticks=[], yticks=[])

plt.show()

flat方法 https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.flat.html


参考资料:


作者:禹洋同学 微信公众号:practice_yuyang

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 214,128评论 6 493
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,316评论 3 388
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 159,737评论 0 349
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,283评论 1 287
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,384评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,458评论 1 292
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,467评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,251评论 0 269
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,688评论 1 306
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,980评论 2 328
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,155评论 1 342
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,818评论 4 337
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,492评论 3 322
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,142评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,382评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,020评论 2 365
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,044评论 2 352

推荐阅读更多精彩内容