YARN作业运行机制

YARN中包括以下几个角色:

  1. 客户端(Client):向整个集群提交MapReduce作业。
  2. YARN资源管理器(ResourceManager):负责调度整个集群的计算资源。
  3. YARN节点管理器(NodeManager):在集群的机器上启动以及监控container。
  4. MapReduce应用管理器(MRAppMaster): 调度某个作业的所有任务. 应用管理器和任务运行在container中, container由资源管理器调度, 由节点管理器管理。
  5. 分布式文件系统:通常是HDFS。
yarn的运行机制

1、作业提交

YARN中的提交作业的API和经典的MapReduce很像(第1步). 作业提交的过程和经典的MapReduce很像, 新的作业ID(应用ID)由资源管理器分配(第2步). 作业的客户端核实作业的输出, 计算输入的split, 将作业的资源(包括Jar包, 配置文件, split信息)拷贝给HDFS(第3步). 最后, 通过调用资源管理器的submitApplication()来提交作业(第4步).

2、作业初始化

当资源管理器收到submitApplciation()的请求时, 就将该请求发给调度器(scheduler), 调度器分配第一个container, 然后资源管理器在该container内启动应用管理器进程, 由节点管理器监控(第5a和5b步).

MapReduce作业的应用管理器是一个主类为MRAppMaster的Java应用. 其通过创造一些bookkeeping对象来监控作业的进度, 得到任务的进度和完成报告(第6步). 然后其通过分布式文件系统得到由客户端计算好的输入split(第7步). 然后为每个输入split创建一个map任务, 根据mapreduce.job.reduces创建reduce任务对象.

然后应用管理器决定如何运行构成整个作业的任务. 如果作业很小, 应用管理器会选择在其自己的JVM中运行任务, 这种作业称作是被unerized, 或者是以uber task的方式运行. 在任务运行之前, 作业的setup方法被调用来创建输出路径. 与MapRuduce 1中该方法由tasktracker运行的一个任务调用不同, 在YARN中是由应用管理器调用的.

3、任务分配

如果不是小作业, 那么应用管理器向资源管理器请求container来运行所有的map和reduce任务(第8步). (注:每个任务对应一个container,且只能在该container上运行)这些请求是通过心跳来传输的, 包括每个map任务的数据位置, 比如存放输入split的主机名和机架(rack). 调度器利用这些信息来调度任务, 尽量将任务分配给存储数据的节点, 或者退而分配给和存放输入split的节点相同机架的节点.

请求也包括了任务的内存需求, 默认情况下map和reduce任务的内存需求都是1024MB. 可以通过mapreduce.map.memory.mb和mapreduce.reduce.memory.mb来配置.

分配内存的方式和MapReduce 1中不一样, MapReduce 1中每个tasktracker有固定数量的slot, slot是在集群配置是设置的, 每个任务运行在一个slot中, 每个slot都有最大内存限制, 这也是整个集群固定的. 这种方式很不灵活.

在YARN中, 资源划分的粒度更细. 应用的内存需求可以介于最小内存和最大内存之间, 并且必须是最小内存的倍数.

4、任务运行

当一个任务由资源管理器的调度器分配给一个container后, 应用管理器通过练习节点管理器来启动container(第9a步和9b步). 任务有一个主类为YarnChild的Java应用执行. 在运行任务之前首先本地化任务需要的资源, 比如作业配置, JAR文件, 以及分布式缓存的所有文件(第10步). 最后, 运行map或reduce任务(第11步).

YarnChild运行在一个专用的JVM中, 但是YARN不支持JVM重用.

5、进度和状态更新

YARN中的任务将其进度和状态(包括counter)返回给应用管理器, 后者通过每3秒的脐带接口有整个作业的视图(view). 这和MapRduce 1不太一样, 后者的进度流从tasktracker到jobtracker。

客户端每秒(通过mapreduce.client.progressmonitor.pollinterval设置)向应用管理器请求进度更新, 展示给用户。

在MapReduce 1中, jobtracker的UI有运行的任务列表及其对应的进度. 在YARN中, 资源管理器的UI展示了所有的应用以及各自的应用管理器的UI。

6、作业完成

除了向应用管理器请求作业进度外, 客户端每5分钟都会通过调用waitForCompletion()来检查作业是否完成. 时间间隔可以通过mapreduce.client.completion.pollinterval来设置。

作业完成之后, 应用管理器和container会清理工作状态, OutputCommiter的作业清理方法也会被调用. 作业的信息会被作业历史服务器存储以备之后用户核查。

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 215,245评论 6 497
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,749评论 3 391
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 160,960评论 0 350
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,575评论 1 288
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,668评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,670评论 1 294
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,664评论 3 415
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,422评论 0 270
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,864评论 1 307
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,178评论 2 331
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,340评论 1 344
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,015评论 5 340
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,646评论 3 323
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,265评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,494评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,261评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,206评论 2 352

推荐阅读更多精彩内容