自己写一个卷积神经网络

姓名 郭宇

学号 16130130299

转载自

【深度学习系列 自己手写一个卷积神经网络】

http://m.toutiaocdn.net/group/6491421372814721549/?iid=18102364373&app=news_article&tt_from=android_share&utm_medium=toutiao_android&utm_campaign=client_share

【嵌牛导读】如何自己写一个卷积神经网络以及掌握一些技巧

【嵌牛鼻子】人工智能 机器学习

【嵌牛提问】怎样进一步理解卷积神经网络

【嵌牛正文】卷积神经网络的前向传播

首先我们来看一个最简单的卷积神经网络:

1.输入层---->卷积层

以上一节的例子为例,输入是一个4*4 的image,经过两个2*2的卷积核进行卷积运算后,变成两个3*3的feature_map

以卷积核filter1为例(stride = 1 ):

计算第一个卷积层神经元o11的输入:

神经元o11的输出:(此处使用Relu激活函数)

其他神经元计算方式相同

2.卷积层---->池化层

计算池化层m11 的输入(取窗口为 2 * 2),池化层没有激活函数

3.池化层---->全连接层

池化层的输出到flatten层把所有元素“拍平”,然后到全连接层。

4.全连接层---->输出层

全连接层到输出层就是正常的神经元与神经元之间的邻接相连,通过softmax函数计算后输出到output,得到不同类别的概率值,输出概率值最大的即为该图片的类别。

卷积神经网络的反向传播

传统的神经网络是全连接形式的,如果进行反向传播,只需要由下一层对前一层不断的求偏导,即求链式偏导就可以求出每一层的误差敏感项,然后求出权重和偏置项的梯度,即可更新权重。而卷积神经网络有两个特殊的层:卷积层和池化层。池化层输出时不需要经过激活函数,是一个滑动窗口的最大值,一个常数,那么它的偏导是1。池化层相当于对上层图片做了一个压缩,这个反向求误差敏感项时与传统的反向传播方式不同。从卷积后的feature_map反向传播到前一层时,由于前向传播时是通过卷积核做卷积运算得到的feature_map,所以反向传播与传统的也不一样,需要更新卷积核的参数。下面我们介绍一下池化层和卷积层是如何做反向传播的。

在介绍之前,首先回顾一下传统的反向传播方法:

卷积层的反向传播

由前向传播可得:

首先计算输入层的误差项δ11:

观察一下上面几个式子的规律,归纳一下,可以得到如下表达式:

此时我们的误差敏感矩阵就求完了,得到误差敏感矩阵后,即可求权重的梯度。

推论出权重的梯度

误差项的梯度

可以看出,偏置项的偏导等于这一层所有误差敏感项之和。得到了权重和偏置项的梯度后,就可以根据梯度下降法更新权重和梯度了。

池化层的反向传播

池化层的反向传播就比较好求了,看着下面的图,左边是上一层的输出,也就是卷积层的输出feature_map,右边是池化层的输入,还是先根据前向传播,把式子都写出来,方便计算:

这样就求出了池化层的误差敏感项矩阵。同理可以求出每个神经元的梯度并更新权重。

手写一个卷积神经网络

1.定义一个卷积层

首先我们通过ConvLayer来实现一个卷积层,定义卷积层的超参数

其中calculate_output_size用来计算通过卷积运算后输出的feature_map大小

2.构造一个激活函数

此处用的是RELU激活函数,因此我们在activators.py里定义,forward是前向计算,backforward是计算公式的导数:

其他常见的激活函数我们也可以放到activators里,如sigmoid函数,我们可以做如下定义:

如果我们需要自动以其他的激活函数,都可以在activator.py定义一个类即可。

3.定义一个类,保存卷积层的参数和梯度

4.卷积层的前向传播

1).获取卷积区域

2).进行卷积运算

3).增加zero_padding

4).进行前向传播

其中element_wise_op函数是将每个组的元素对应相乘

5.卷积层的反向传播

1).将误差传递到上一层

2).保存传递到上一层的sensitivity map的数组

3).计算代码梯度

4).按照梯度下降法更新参数

6.MaxPooling层的训练

1).定义MaxPooling类

2).前向传播计算

3).反向传播计算

完整代码请见:cnn.py(https://github.com/huxiaoman7/PaddlePaddle_code/blob/master/1.mnist/cnn.py)

最后,我们用之前的4 * 4的image数据检验一下通过一次卷积神经网络进行前向传播和反向传播后的输出结果:

运行一下:

运行结果:

总结

本文主要讲解了卷积神经网络中反向传播的一些技巧,包括卷积层和池化层的反向传播与传统的反向传播的区别,并实现了一个完整的CNN,后续大家可以自己修改一些代码,譬如当水平滑动长度与垂直滑动长度不同时需要怎么调整等等。

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 222,183评论 6 516
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 94,850评论 3 399
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 168,766评论 0 361
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 59,854评论 1 299
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 68,871评论 6 398
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 52,457评论 1 311
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,999评论 3 422
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 39,914评论 0 277
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 46,465评论 1 319
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 38,543评论 3 342
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 40,675评论 1 353
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 36,354评论 5 351
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 42,029评论 3 335
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 32,514评论 0 25
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 33,616评论 1 274
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 49,091评论 3 378
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 45,685评论 2 360

推荐阅读更多精彩内容