关于不同卷积核大小的思考

未经同意,不得转载

一、1x1卷积核的作用

(1)实现跨通道的交互和信息整合

使用1x1卷积核,其实就是对不同channel间的信息做线性组合的一个变换过程。比如输入为3x3x3的feature map,后面添加一个1x1x3,64 channels的卷积核,就变成了3x3x64的feature map,原来的3个channels就可以理解为跨通道线性组合变成了64 channels,这就是通道间的信息交互。过程如下图所示:

1x1卷积计算

(2)增加非线性特性

1x1卷积核,利用后接的非线性激活函数可以在保持feature map尺度不变的前提下大幅增加非线性特性,把网络做的很深。

(3)减少模型参数,降低计算量

假设输入feature map的维度为256维,要求输出维度也是256维。有以下两种操作:

  • 256维的输入直接经过一个3×3×256的卷积层,输出一个256维的feature map,那么参数量为:
256×3×3×256 = 589824
  • 256维的输入先经过一个1×1×64的卷积层,再经过一个3×3×64的卷积层,最后经过一个1×1×256的卷积层,输出256维,参数量为:
(256×1×1×64)+(64×3×3×64)+(64×1×1×256)= 69632

可以看到,参数量减少了大约8.5倍。

二、为什么2个3x3可以代替1个5x5的卷积核

在卷积神经网络中,一般情况下,卷积核越大,感受野(receptive field)越大,看到的图片信息越多,所获得的全局特征越好。虽说如此,但是大的卷积核会导致计算量的暴增,不利于模型深度的增加,计算性能也会降低。

于是在VGG、Inception网络中,利用两个3×3卷积核的组合替换一个5×5卷积核,这样的好处是:
(1)在具有相同感知野的条件下,提升了网络的深度,在一定程度上提升了神经网络的效果;
(2)降低了参数量(从5×5×1 x channels 到 3×3×2 x channels)。

那么为什么可以这样来替换呢?
从卷积的定义可以知道,一张图像经过卷积后的尺寸大小计算方式为:

(W - F + 2P)/ S + 1
其中,W是输入尺寸,F是卷积核大小,P是填充尺寸,S是步长

那么,假设输入是28x28:

  • 使用5x5的卷积核对其卷积,步长(stride)为1,填充(padding)为0,得到的结果是:
(28-5 + 0x2) / 1 + 1=24
  • 使用2层3x3的卷积核,同样步长(stride)为1,填充(padding)为0
第一层3x3:得到的结果是(28-3 + 0x2)/ 1 + 1=26
第二层3x3:得到的结果是(26-3 + 0x2)/ 1 + 1=24

所以最终结果是2层3x3和1个5x5的卷积核得到的feature map大小是一样的。
同理也能得出三个3x3的卷积核可以替换一个7x7的卷积核。

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 215,923评论 6 498
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,154评论 3 392
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 161,775评论 0 351
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,960评论 1 290
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,976评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,972评论 1 295
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,893评论 3 416
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,709评论 0 271
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,159评论 1 308
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,400评论 2 331
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,552评论 1 346
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,265评论 5 341
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,876评论 3 325
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,528评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,701评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,552评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,451评论 2 352

推荐阅读更多精彩内容