控制反转(IoC)与依赖注入(DI)

什么是控制反转

在讨论控制反转之前,我们先来看看软件系统中耦合的对象。


图1:软件系统中耦合的对象

从图中可以看到,软件中的对象就像齿轮一样,协同工作,但是互相耦合,一个零件不能正常工作,整个系统就崩溃了。这是一个强耦合的系统。齿轮组中齿轮之间的啮合关系,与软件系统中对象之间的耦合关系非常相似。对象之间的耦合关系是无法避免的,也是必要的,这是协同工作的基础。现在,伴随着工业级应用的规模越来越庞大,对象之间的依赖关系也越来越复杂,经常会出现对象之间的多重依赖性关系,因此,架构师和设计师对于系统的分析和设计,将面临更大的挑战。对象之间耦合度过高的系统,必然会出现牵一发而动全身的情形。

为了解决对象间耦合度过高的问题,软件专家Michael Mattson提出了IOC理论,用来实现对象之间的“解耦”。

控制反转(Inversion of Control)是一种是面向对象编程中的一种设计原则,用来减低计算机代码之间的耦合度。其基本思想是:借助于“第三方”实现具有依赖关系的对象之间的解耦。


图2:IOC解耦过程

由于引进了中间位置的“第三方”,也就是IOC容器,使得A、B、C、D这4个对象没有了耦合关系,齿轮之间的传动全部依靠“第三方”了,全部对象的控制权全部上缴给“第三方”IOC容器,所以,IOC容器成了整个系统的关键核心,它起到了一种类似“粘合剂”的作用,把系统中的所有对象粘合在一起发挥作用,如果没有这个“粘合剂”,对象与对象之间会彼此失去联系,这就是有人把IOC容器比喻成“粘合剂”的由来。
我们再来看看,控制反转(IOC)到底为什么要起这么个名字?我们来对比一下:

1.软件系统在没有引入IOC容器之前,如图1所示,对象A依赖于对象B,那么对象A在初始化或者运行到某一点的时候,自己必须主动去创建对象B或者使用已经创建的对象B。无论是创建还是使用对象B,控制权都在自己手上。

2.软件系统在引入IOC容器之后,这种情形就完全改变了,如图2所示,由于IOC容器的加入,对象A与对象B之间失去了直接联系,所以,当对象A运行到需要对象B的时候,IOC容器会主动创建一个对象B注入到对象A需要的地方。
通过前后的对比,我们不难看出来:对象A获得依赖对象B的过程,由主动行为变为了被动行为,控制权颠倒过来了,这就是“控制反转”这个名称的由来。

控制反转不只是软件工程的理论,在生活中我们也有用到这种思想。再举一个现实生活的例子:
海尔公司作为一个电器制商需要把自己的商品分销到全国各地,但是发现,不同的分销渠道有不同的玩法,于是派出了各种销售代表玩不同的玩法,随着渠道越来越多,发现,每增加一个渠道就要新增一批人和一个新的流程,严重耦合并依赖各渠道商的玩法。实在受不了了,于是制定业务标准,开发分销信息化系统,只有符合这个标准的渠道商才能成为海尔的分销商。让各个渠道商反过来依赖自己标准。反转了控制,倒置了依赖。

我们把海尔和分销商当作软件对象,分销信息化系统当作IOC容器,可以发现,在没有IOC容器之前,分销商就像图1中的齿轮一样,增加一个齿轮就要增加多种依赖在其他齿轮上,势必导致系统越来越复杂。开发分销系统之后,所有分销商只依赖分销系统,就像图2显示那样,可以很方便的增加和删除齿轮上去。

什么是依赖注入

依赖注入就是将实例变量传入到一个对象中去(Dependency injection means giving an object its instance variables)。

什么是依赖

如果在 Class A 中,有 Class B 的实例,则称 Class A 对 Class B 有一个依赖。例如下面类 Human 中用到一个 Father 对象,我们就说类 Human 对类 Father 有一个依赖。

public class Human {
    ...
    Father father;
    ...
    public Human() {
        father = new Father();
    }
}

仔细看这段代码我们会发现存在一些问题:

1.如果现在要改变 father 生成方式,如需要用new Father(String name)初始化 father,需要修改 Human 代码;
2.如果想测试不同 Father 对象对 Human 的影响很困难,因为 father 的初始化被写死在了 Human 的构造函数中;
3.如果new Father()过程非常缓慢,单测时我们希望用已经初始化好的 father 对象 Mock 掉这个过程也很困难。

依赖注入

上面将依赖在构造函数中直接初始化是一种 Hard init 方式,弊端在于两个类不够独立,不方便测试。我们还有另外一种 Init 方式,如下:

public class Human {
    ...
    Father father;
    ...
    public Human(Father father) {
        this.father = father;
    }
}

上面代码中,我们将 father 对象作为构造函数的一个参数传入。在调用 Human 的构造方法之前外部就已经初始化好了 Father 对象。像这种非自己主动初始化依赖,而通过外部来传入依赖的方式,我们就称为依赖注入。
现在我们发现上面 1 中存在的两个问题都很好解决了,简单的说依赖注入主要有两个好处:

1.解耦,将依赖之间解耦。
2.因为已经解耦,所以方便做单元测试,尤其是 Mock 测试。

控制反转和依赖注入的关系

我们已经分别解释了控制反转和依赖注入的概念。有些人会把控制反转和依赖注入等同,但实际上它们有着本质上的不同。

  • 控制反转是一种思想
  • 依赖注入是一种设计模式

IoC框架使用依赖注入作为实现控制反转的方式,但是控制反转还有其他的实现方式,例如说ServiceLocator,所以不能将控制反转和依赖注入等同。

Spring中的依赖注入

上面我们提到,依赖注入是实现控制反转的一种方式。下面我们结合Spring的IoC容器,简单描述一下这个过程。

class MovieLister...
    private MovieFinder finder;
    public void setFinder(MovieFinder finder) {
        this.finder = finder;
    }

class ColonMovieFinder...
    public void setFilename(String filename) {
        this.filename = filename;
    }

我们先定义两个类,可以看到都使用了依赖注入的方式,通过外部传入依赖,而不是自己创建依赖。那么问题来了,谁把依赖传给他们,也就是说谁负责创建finder,并且把finder传给MovieLister。答案是Spring的IoC容器。

要使用IoC容器,首先要进行配置。这里我们使用xml的配置,也可以通过代码注解方式配置。下面是spring.xml的内容

<beans>
    <bean id="MovieLister" class="spring.MovieLister">
        <property name="finder">
            <ref local="MovieFinder"/>
        </property>
    </bean>
    <bean id="MovieFinder" class="spring.ColonMovieFinder">
        <property name="filename">
            <value>movies1.txt</value>
        </property>
    </bean>
</beans>

在Spring中,每个bean代表一个对象的实例,默认是单例模式,即在程序的生命周期内,所有的对象都只有一个实例,进行重复使用。通过配置bean,IoC容器在启动的时候会根据配置生成bean实例。具体的配置语法参考Spring文档。这里只要知道IoC容器会根据配置创建MovieFinder,在运行的时候把MovieFinder赋值给MovieLister的finder属性,完成依赖注入的过程。

下面给出测试代码

public void testWithSpring() throws Exception {
    ApplicationContext ctx = new FileSystemXmlApplicationContext("spring.xml");//1
    MovieLister lister = (MovieLister) ctx.getBean("MovieLister");//2
    Movie[] movies = lister.moviesDirectedBy("Sergio Leone");
    assertEquals("Once Upon a Time in the West", movies[0].getTitle());
}

1.根据配置生成ApplicationContext,即IoC容器。
2.从容器中获取MovieLister的实例。

总结

1.控制反转是一种在软件工程中解耦合的思想,调用类只依赖接口,而不依赖具体的实现类,减少了耦合。控制权交给了容器,在运行的时候才由容器决定将具体的实现动态的“注入”到调用类的对象中。
2.依赖注入是一种设计模式,可以作为控制反转的一种实现方式。依赖注入就是将实例变量传入到一个对象中去(Dependency injection means giving an object its instance variables)。
3.通过IoC框架,类A依赖类B的强耦合关系可以在运行时通过容器建立,也就是说把创建B实例的工作移交给容器,类A只管使用就可以。

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 214,717评论 6 496
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,501评论 3 389
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 160,311评论 0 350
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,417评论 1 288
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,500评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,538评论 1 293
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,557评论 3 414
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,310评论 0 270
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,759评论 1 307
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,065评论 2 330
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,233评论 1 343
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,909评论 5 338
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,548评论 3 322
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,172评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,420评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,103评论 2 365
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,098评论 2 352

推荐阅读更多精彩内容