数据结构思维 第五章 双链表

第五章 双链表

原文:Chapter 5 Doubly-linked list

译者:飞龙

协议:CC BY-NC-SA 4.0

自豪地采用谷歌翻译

本章回顾了上一个练习的结果,并介绍了List接口的另一个实现,即双链表。

5.1 性能分析结果

在之前的练习中,我们使用了Profiler.java,运行ArrayListLinkedList的各种操作,它们具有一系列的问题规模。我们将运行时间与问题规模绘制在重对数比例尺上,并估计所得曲线的斜率,它表示运行时间和问题规模之间的关系的主要指数。

例如,当我们使用add方法将元素添加到ArrayList的末尾,我们发现,执行n次添加的总时间正比于n。也就是说,估计的斜率接近1。我们得出结论,执行n次添加是 O(n)的,所以平均来说,单个添加的时间是常数时间,或者O(1),基于算法分析,这是我们的预期。

这个练习要求你填充profileArrayListAddBeginning的主体,它测试了,在ArrayList头部添加一个新的元素的性能。根据我们的分析,我们预计每个添加都是线性的,因为它必须将其他元素向右移动;所以我们预计,n次添加是平方复杂度。

这是一个解决方案,你可以在仓库的solution目录中找到它。

public static void profileArrayListAddBeginning() {
    Timeable timeable = new Timeable() {
        List<String> list;

        public void setup(int n) {
            list = new ArrayList<String>();
        }

        public void timeMe(int n) {
            for (int i=0; i<n; i++) {
                list.add(0, "a string");
            }
        }
    };
    int startN = 4000;
    int endMillis = 10000;
    runProfiler("ArrayList add beginning", timeable, startN, endMillis);
}

这个方法几乎和profileArrayListAddEnd相同。唯一的区别在于timeMe,它使用add的双参数版本,将新元素置于下标0处。同样,我们增加了endMillis,来获取一个额外的数据点。

以下是时间结果(左侧是问题规模,右侧是运行时间,单位为毫秒):

4000, 14
8000, 35
16000, 150
32000, 604
64000, 2518
128000, 11555

图 5.1 展示了运行时间和问题规模的图形。

图 5.1:分析结果:在ArrayList开头添加n个元素的运行时间和问题规模

请记住,该图上的直线并不意味着该算法是线性的。相反,如果对于任何指数k,运行时间与n ** k成正比,我们预计会看到斜率为k的直线。在这种情况下,我们预计,n次添加的总时间与n ** 2成正比,所以我们预计会有一条斜率为2的直线。实际上,估计的斜率是1.992,非常接近。恐怕假数据才能做得这么好。

5.2 分析LinkedList方法的性能

在以前的练习中,你还分析了,在LinkedList头部添加新元素的性能。根据我们的分析,我们预计每个add都要花时间,因为在一个链表中,我们不必转移现有元素;我们可以在头部添加一个新节点。所以我们预计n次添加的总时间是线性的。

这是一个解决方案:

public static void profileLinkedListAddBeginning() {
    Timeable timeable = new Timeable() {
        List<String> list;

        public void setup(int n) {
            list = new LinkedList<String>();
        }

        public void timeMe(int n) {
            for (int i=0; i<n; i++) {
                list.add(0, "a string");
            }
        }
    };
    int startN = 128000;
    int endMillis = 2000;
    runProfiler("LinkedList add beginning", timeable, startN, endMillis);
}

我们只做了一些修改,将ArrayList替换为LinkedList并调整startNendMillis,来获得良好的数据范围。测量结果比上一批数据更加嘈杂;结果如下:

128000, 16
256000, 19
512000, 28
1024000, 77
2048000, 330
4096000, 892
8192000, 1047
16384000, 4755

图 5.2 展示了这些结果的图形。

图 5.2:分析结果:在LinkedList开头添加n个元素的运行时间和问题规模

并不是一条很直的线,斜率也不是正好是1,最小二乘拟合的斜率是1.23。但是结果表示,n次添加的总时间至少近似于O(n),所以每次添加都是常数时间。

5.3 LinkedList的尾部添加

在开头添加元素是一种操作,我们期望LinkedList的速度快于ArrayList。但是为了在末尾添加元素,我们预计LinkedList会变慢。在我的实现中,我们必须遍历整个列表来添加一个元素到最后,它是线性的。所以我们预计n次添加的总时间是二次的。

但是不是这样。以下是代码:

public static void profileLinkedListAddEnd() {
    Timeable timeable = new Timeable() {
        List<String> list;

        public void setup(int n) {
            list = new LinkedList<String>();
        }

        public void timeMe(int n) {
            for (int i=0; i<n; i++) {
                list.add("a string");
            }
        }
    };
    int startN = 64000;
    int endMillis = 1000;
    runProfiler("LinkedList add end", timeable, startN, endMillis);
}

这里是结果:

64000, 9
128000, 9
256000, 21
512000, 24
1024000, 78
2048000, 235
4096000, 851
8192000, 950
16384000, 6160

图 5.3 展示了这些结果的图形。

图 5.2:分析结果:在LinkedList末尾添加n个元素的运行时间和问题规模

同样,测量值很嘈杂,线不完全是直的,但估计的斜率为1.19,接近于在头部添加元素,而并不非常接近2,这是我们根据分析的预期。事实上,它接近1,这表明在尾部添加元素是常数元素。这是怎么回事?

5.4 双链表

我的链表实现MyLinkedList,使用单链表;也就是说,每个元素都包含下一个元素的链接,并且MyArrayList对象本身具有第一个节点的链接。

但是,如果你阅读LinkedList的文档,网址为 http://thinkdast.com/linked,它说:

ListDeque接口的双链表实现。[...] 所有的操作都能像双向列表那样执行。索引该列表中的操作将从头或者尾遍历列表,使用更接近指定索引的那个。

如果你不熟悉双链表,你可以在 http://thinkdast.com/doublelist 上阅读更多相关信息,但简称为:

  • 每个节点包含下一个节点的链接和上一个节点的链接。
  • LinkedList对象包含指向列表的第一个和最后一个元素的链接。

所以我们可以从列表的任意一端开始,并以任意方向遍历它。因此,我们可以在常数时间内,在列表的头部和末尾添加和删除元素!

下表总结了ArrayListMyLinkedList(单链表)和LinkedList(双链表)的预期性能:

MyArrayList MyLinkedList LinkedList
add(尾部) 1 n 1
add(头部) n 1 1
add(一般) n n n
get/set 1 n n
indexOf/ lastIndexOf n n n
isEmpty/size 1 1 1
remove(尾部) 1 n 1
remove(头部) n 1 1
remove(一般) n n n

5.5 结构的选择

对于头部插入和删除,双链表的实现优于ArrayList。对于尾部插入和删除,都是一样好。所以,ArrayList唯一优势是getset,链表中它需要线性时间,即使是双链表。

如果你知道,你的应用程序的运行时间取决于getset元素的所需时间,则ArrayList可能是更好的选择。如果运行时间取决于在开头或者末尾附加添加和删除元素,LinkedList可能会更好。

但请记住,这些建议是基于大型问题的增长级别。还有其他因素要考虑:

  • 如果这些操作不占用你应用的大部分运行时间 - 也就是说,如果你的应用程序花费大部分时间来执行其他操作 - 那么你对List实现的选择并不重要。
  • 如果你正在处理的列表不是很大,你可能无法获得期望的性能。对于小型问题,二次算法可能比线性算法更快,或者线性可能比常数时间更快。而对于小型问题,差异可能并不重要。
  • 另外,别忘了空间。到目前为止,我们专注于运行时间,但不同的实现需要不同的空间。在ArrayList中,这些元素并排存储在单个内存块中,所以浪费的空间很少,并且计算机硬件通常在连续的块上更快。在链表中,每个元素需要一个节点,带有一个或两个链接。链接占用空间(有时甚至超过数据!),并且节点分散在内存中,硬件效率可能不高。

总而言之,算法分析为数据结构的选择提供了一些指南,但只有:

  • 你的应用的运行时间很重要,
  • 你的应用的运行时间取决于你选择的数据结构,以及,
  • 问题的规模足够大,增长级别实际上预测了哪个数据结构更好。

作为一名软件工程师,在较长的职业生涯中,你几乎不必考虑这种情况。

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 213,616评论 6 492
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,020评论 3 387
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 159,078评论 0 349
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,040评论 1 285
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,154评论 6 385
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,265评论 1 292
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,298评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,072评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,491评论 1 306
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,795评论 2 328
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,970评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,654评论 4 337
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,272评论 3 318
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,985评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,223评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,815评论 2 365
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,852评论 2 351

推荐阅读更多精彩内容