time C-index之训练集和测试集的对比

刚发了time C-index,收到一条留言


就是机器学习算法应该分训练集与测试集,上次分享的时单个模型,或者多个模型的time C-index对比,这次分享的是同一个模型的训练集和测试集的time C-index对比。

新鲜出炉,现学现卖,代码参考自pec::cindex帮助文档,里面有提到第一个参数object:

| A named list of prediction models, where allowed entries are (1) R-objects for which a [predictSurvProb] method exists (see details), (2) a call that evaluates to such an R-object (see examples), (3) a matrix with predicted probabilities having as many rows as data and as many columns as times. For cross-validation all objects in this list must include their call.

而predictSurvProb是一个用于预测的函数。

rm(list = ls())
library(rms)
library(pec)
library(ggplot2)
library(prodlim)

编造三个示例数据,一个做训练集,两个做测试集,SimSurv是个方便的编生存数据的函数

set.seed(13)
dat <- SimSurv(100)
head(dat)

##   eventtime  censtime     time event X1         X2 status
## 1  3.068009 24.716896 3.068009     1  0  0.5543269      1
## 2  9.666322 17.105853 9.666322     1  1 -0.2802719      1
## 3  1.200405  2.101732 1.200405     1  1  1.7751634      1
## 4  2.749020  5.286182 2.749020     1  1  0.1873201      1
## 5  5.974245 14.870069 5.974245     1  0  1.1425261      1
## 6  1.853016  7.541804 1.853016     1  1  0.4155261      1
set.seed(100)
test1 <- SimSurv(100)
set.seed(14)
test2 <- SimSurv(100)

fit <- cph(Surv(time,status)~X1+X2,data=dat,x=TRUE,y=TRUE,surv = T)
Cpec <- pec::cindex(fit,
                    formula=Surv(time,status)~1,
                    data=dat) 
times <- c(1, 3, 5, 7, 10)
p1 <- predictSurvProb(fit,newdata=test1,times=times)
p2 <- predictSurvProb(fit,newdata=test2,times=times)

Cpec2 <- pec::cindex(list(train =fit,
                          test1= p1,
                          test2= p2),
                    formula=Surv(time,status)~1,
                    eval.times = times,
                    data=dat) 
Cpec2$AppCindex

## $train
## [1] 0.7544231 0.7481185 0.7325740 0.7440132 0.7357568
## 
## $test1
## [1] 0.4032685 0.5604834 0.4831370 0.5171105 0.5183455
## 
## $test2
## [1] 0.6932702 0.6020585 0.5202996 0.5085714 0.4999364

plot(Cpec2)

用ggplot2画更好看的版本,cindex$AppCindex里面是3个向量

Cpec2$AppCindex

## $train
## [1] 0.7544231 0.7481185 0.7325740 0.7440132 0.7357568
## 
## $test1
## [1] 0.4032685 0.5604834 0.4831370 0.5171105 0.5183455
## 
## $test2
## [1] 0.6932702 0.6020585 0.5202996 0.5085714 0.4999364

所以需要宽变长才能给ggplot2用

cindex_df <- data.frame(
  Time = times,
  do.call(cbind,Cpec2$AppCindex)
)
cindex_df

##   Time     train     test1     test2
## 1    1 0.7544231 0.4032685 0.6932702
## 2    3 0.7481185 0.5604834 0.6020585
## 3    5 0.7325740 0.4831370 0.5202996
## 4    7 0.7440132 0.5171105 0.5085714
## 5   10 0.7357568 0.5183455 0.4999364

#宽变长
library(tidyr)
dat = pivot_longer(cindex_df,cols = 2:4,
             names_to = "model",
             values_to = "cindex")
head(dat)

## # A tibble: 6 × 3
##    Time model cindex
##   <dbl> <chr>  <dbl>
## 1     1 train  0.754
## 2     1 test1  0.403
## 3     1 test2  0.693
## 4     3 train  0.748
## 5     3 test1  0.560
## 6     3 test2  0.602

library(ggplot2)
ggplot(dat, aes(x = Time, y = cindex)) +
  geom_line(aes(color = model),linewidth = 2) + 
  scale_color_brewer(palette = "Set1")+
  geom_hline(yintercept = 0.5,linetype = 4)+
  ylim(0.4,1)+
  labs(title = "Time-dependent C-index", x = "Time (years)", y = "C-index") + 
  theme_bw() 
©著作权归作者所有,转载或内容合作请联系作者
平台声明:文章内容(如有图片或视频亦包括在内)由作者上传并发布,文章内容仅代表作者本人观点,简书系信息发布平台,仅提供信息存储服务。

推荐阅读更多精彩内容