一:概述
三角函数是数学中属于初等函数中的超越函数的函数。它们的本质是任何角的集合与一个比值的集合的变量之间的映射。通常的三角函数是在平面直角坐标系中定义的。其定义域为整个实数域。
三角函数公式看似很多、很复杂,但只要掌握了三角函数的本质及内部规律,就会发现三角函数各个公式之间有强大的联系。而掌握三角函数的内部规律及本质也是学好三角函数的关键所在。下面是通过思维导图的方式,将这些内部规律和联系表现出现,方便学习者掌握三角函数。图一为学习三角函数的主要分支。我们从下列分支,一个一个分支开始学习。
二:角度与弧度制
2.1我们知道,常见的度量方法有角度制与弧度制两种。什么是角度制?所谓角度制,就是将圆周 360 等分,其中 1 份所对应的圆心角定义为 1 度,记作 1°。并将 1 度的 1/60 定义为 1 分,记作 1';将 1 分的 1/60 定义为 1 秒,记作 1"。换言之,1°=60',1'=60"。图二是角度制的示意图。
2.2而弧度制则是根据圆心角、弧长、半径之间的数量关系而引入的。当弧长等于半径时,弧所对应的圆心角为 1 弧度,记作 1rad。正角度弧度数是一个正数,负角度弧度数是一个负数,零角度弧度数。半径为r的圆的圆心角α 所对的弧度长为l,那么角α 的弧度数的绝对值是 | α | = l / r。
2.3角度制与弧度制的换算,数字表达式和图示表示如下所示。
2.3.1角度制与弧度制数字表达式:
360°= 2π rad
180°= π rad
1°=(π / 180)rad ≈ 0.01745 rad
1 rad =(180/π)°≈57.30°
α 度的角 = α ·(π / 180)rad
2.3.2角度制与弧度制如图三示表示:
2.4图四为角制和弧度制的思维导图。
三:三角函数基本属性
3.1 三角函数的定义。在直角三角形中,当平面上的三点A、B、C的连线,AB、AC、BC,构成一个直角三角形,其中∠ACB为直角。对∠BAC而言,对边(opposite)a=BC、斜边(hypotenuse)c=AB、邻边(adjacent)b=AC,则存在如图五所示:
3.2三角函数的符号,是由所在的象限所决定。如图六,图七所示。