java源码 - ReentrantLock之NonfairSync

开篇

 NonfairSync和FairSync相比而言,多了一次抢占机会,其他处理逻辑几乎是一模一样。


加锁过程

ReentrantLock的的锁过程如下:

  • 1、先尝试获取锁,通过tryAcquire()实现。
  • 2、获取锁失败后,线程被包装成Node对象后添加到CLH队列,通过addWaiter()实现。
  • 3、添加CLH队列后,逐步的去执行CLH队列的线程,如果当前线程获取到了锁,则返回;否则,当前线程进行休眠,直到唤醒并重新获取锁了才返回。
    public void lock() {
        sync.lock();
    }

    static final class NonfairSync extends Sync {
        private static final long serialVersionUID = 7316153563782823691L;

        final void lock() {
            if (compareAndSetState(0, 1))
                setExclusiveOwnerThread(Thread.currentThread());
            else
                acquire(1);
        }
    }

    public final void acquire(int arg) {
        if (!tryAcquire(arg) &&
            acquireQueued(addWaiter(Node.EXCLUSIVE), arg))
            selfInterrupt();
    }

acquire的操作流程

  • 1、第一步通过tryAcquire()尝试获取锁,成功则返回
  • 2、获取锁失败后通过addWaiter添加到CLH队列的末尾
  • 3、添加CLH队列后,通过acquireQueued()方法逐步的去执行CLH队列的线程,如果当前线程获取到了锁则返回;否则当前线程进行休眠,直到唤醒并重新获取锁后返回。
    public final void acquire(int arg) {
        if (!tryAcquire(arg) &&
            acquireQueued(addWaiter(Node.EXCLUSIVE), arg))
            selfInterrupt();
    }

tryAcquire的操作流程

  • 1、如果锁未占用的情况下:当前线程直接抢占锁并设置锁占用线程为当前线程,非公平锁NonfairSync和FairSync的差别就在于这个地方,非公平锁直接抢占锁,而公平锁则需要判断是否位于头结点来决定是否抢占。
  • 2、如果锁被占用的情况下:判断当前线程是否是占用锁线程,如果是则实现锁的可重入功能,设置锁占用次数。
  • 3、如果上述全否那么就返回占锁失败的。
    protected final boolean tryAcquire(int acquires) {
        return nonfairTryAcquire(acquires);
    }

    final boolean nonfairTryAcquire(int acquires) {
          final Thread current = Thread.currentThread();
          int c = getState();
          if (c == 0) {
              if (compareAndSetState(0, acquires)) {
                  setExclusiveOwnerThread(current);
                  return true;
              }
          }
          else if (current == getExclusiveOwnerThread()) {
              int nextc = c + acquires;
              if (nextc < 0) // overflow
                  throw new Error("Maximum lock count exceeded");
              setState(nextc);
              return true;
          }
          return false;
      }

addWaiter的操作流程

  • 1、将当前线程包装成Node对象。
  • 2、先尝试通过快速失败法尝试在CLH队尾插入Node对象
  • 3、如果快速插入失败后那么就通过enq方法在CLH队尾插入Node对象
    private Node addWaiter(Node mode) {
        Node node = new Node(Thread.currentThread(), mode);
        // Try the fast path of enq; backup to full enq on failure
        Node pred = tail;
        if (pred != null) {
            node.prev = pred;
            if (compareAndSetTail(pred, node)) {
                pred.next = node;
                return node;
            }
        }
        enq(node);
        return node;
    }

    private Node enq(final Node node) {
        for (;;) {
            Node t = tail;
            if (t == null) { // Must initialize
                if (compareAndSetHead(new Node()))
                    tail = head;
            } else {
                node.prev = t;
                if (compareAndSetTail(t, node)) {
                    t.next = node;
                    return t;
                }
            }
        }
    }

acquireQueued的操作流程

  • 1、如果当前节点Node的前驱节点属于head,当前节点属于老二地位通过tryAcquire()尝试获取锁,获取成功后那么就释放原head节点(可以理解为head已经释放锁然后从CLH删除),把当前节点设置为head节点。
  • 2、通过shouldParkAfterFailedAcquire()方法判断Node代表的线程是否进入waiting状态,直到被unpark()。
  • 3、parkAndCheckInterrupt()方法将当前线程进入waiting状态。
  • 4、休眠线程被唤醒的时候会执行 if (p == head && tryAcquire(arg))逻辑判断
    final boolean acquireQueued(final Node node, int arg) {
        boolean failed = true;
        try {
            boolean interrupted = false;
            for (;;) {
                final Node p = node.predecessor();
                if (p == head && tryAcquire(arg)) {
                    setHead(node);
                    p.next = null; // help GC
                    failed = false;
                    return interrupted;
                }
                if (shouldParkAfterFailedAcquire(p, node) &&
                    parkAndCheckInterrupt())
                    interrupted = true;
            }
        } finally {
            if (failed)
                cancelAcquire(node);
        }
    }

shouldParkAfterFailedAcquire的操作流程

  • 1、如果前置节点处于SIGNAL状态,那么当前线程进入阻塞状态,返回true
  • 2、如果前置节点处于ws>0也就是取消状态,那么当前线程节点就往前查找第一个状态处于ws<=0的节点
  • 3、如果前置状态ws=0的节点,那么就把前置节点设置为SIGNAL状态
  • 4、整个shouldParkAfterFailedAcquire函数是在for()循环当中循环执行的,我们可以想象按照步骤2->3->1的顺序执行,按照前置遍历寻找合适的前置节点,接着发现前置节点ws状态为0后重新设置为SIGNAL,最后发现前置节点状态为SINGAL后休眠线程自身。
  • 5、线程从运行态进入waiting状态其实也是经历了一系列的处理过程的。
    private static boolean shouldParkAfterFailedAcquire(Node pred, Node node) {
        int ws = pred.waitStatus;
        if (ws == Node.SIGNAL)
            return true;
        if (ws > 0) {
            do {
                node.prev = pred = pred.prev;
            } while (pred.waitStatus > 0);
            pred.next = node;
        } else {
            compareAndSetWaitStatus(pred, ws, Node.SIGNAL);
        }
        return false;
    }

    private final boolean parkAndCheckInterrupt() {
        LockSupport.park(this);
        return Thread.interrupted();
    }


解锁过程

release过程

  • 1、通过tryRelease()方法尝试让当前线程释放锁对象
  • 2、通过unparkSuccessor()方法设置当前节点状态ws=0并且唤醒CLH队列中的下一个等待线程
    public void unlock() {
        sync.release(1);
    }

    public final boolean release(int arg) {
        if (tryRelease(arg)) {
            Node h = head;
            if (h != null && h.waitStatus != 0)
                unparkSuccessor(h);
            return true;
        }
        return false;
    }

tryRelease过程

  • 1、如果占用锁线程非当前线程直接抛异常
  • 2、递减锁计数后如果值为0那么就释放当前锁占用者
  • 3、更新锁状态为未占用,即state为0
    protected final boolean tryRelease(int releases) {
        int c = getState() - releases;
        if (Thread.currentThread() != getExclusiveOwnerThread())
            throw new IllegalMonitorStateException();
        boolean free = false;
        if (c == 0) {
            free = true;
            setExclusiveOwnerThread(null);
         }
        setState(c);
        return free;
    }

unparkSuccessor过程

  • 1、设置当前Node状态为0
  • 2、寻找下一个等待线程节点来唤醒等待线程并通过LockSupport.unpark()唤醒线程
  • 3、寻找下一个等待线程,如果当前Node的下一个节点符合状态就直接进行唤醒,否则从队尾开始进行倒序查找,找到最优先的线程进行唤醒。
    private void unparkSuccessor(Node node) {

        int ws = node.waitStatus;
        if (ws < 0)
            compareAndSetWaitStatus(node, ws, 0);

        Node s = node.next;
        if (s == null || s.waitStatus > 0) {
            s = null;
            for (Node t = tail; t != null && t != node; t = t.prev)
                if (t.waitStatus <= 0)
                    s = t;
        }
        if (s != null)
            LockSupport.unpark(s.thread);
    }
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 215,133评论 6 497
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,682评论 3 390
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 160,784评论 0 350
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,508评论 1 288
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,603评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,607评论 1 293
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,604评论 3 415
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,359评论 0 270
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,805评论 1 307
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,121评论 2 330
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,280评论 1 344
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,959评论 5 339
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,588评论 3 322
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,206评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,442评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,193评论 2 367
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,144评论 2 352